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SENSOR MANAGEMENT IN WSNS

¢ Power consumption profile of sensor nodes 

¢ Limited resources (energy, bandwidth, etc.)
¢ Proper management

� Energy: conserve to prolong lifetime of the WSN
� Bandwidth: more efficient transmission 3

http://www.intechopen.com/books/small-scale-energy-harvesting/electrostatic-conversion-for-vibration-energy-harvesting



SENSOR MANAGEMENT FOR
ESTIMATION IN WSNS
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• Sensor networks for estimation: Environment/health monitoring, 
target localization and tracking

• Limited network resources: Sensor battery power, communication 
bandwidth, storage and computing capacity

• Resource management: Optimal sensor selection/scheduling, optimal 
inter-sensor collaboration



SENSOR MANAGEMENT FOR
ESTIMATION IN WSNS
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¢ Resource management: Optimal sensor selection/scheduling, optimal 
inter-sensor collaboration

a) Sensor selection/scheduling: Find optimal tradeoff between 
estimation accuracy and sensor activations over space and/or time

b) Sensor collaboration: Find optimal inter-sensor communication 
topology and power allocation scheme



SENSOR SELECTION
¢ Sensor selection (myopic/one-time ahead): Select optimal subset of 

sensors in space to minimize estimation error (or other performance measure) 
subject to energy constraints (or other constraints) 

¢ Example: sensor selection for field estimation

6
Figure: sensor network for field estimation (left); 14 selected sensors (right)



SENSOR SCHEDULING
¢ Sensor scheduling (multiple-time ahead/non-myopic): Seek

optimal sensor schedules in both space and time
¢ For example, sensor scheduling for target tracking

7Figure: sensor schedule at t = 10 (left); sensor schedule at t = 24 (right)



STATE OF THE ART: SENSOR SELECTION/SCHEDULING

¢ Sensor selection/scheduling: several variations
of the problems have been addressed according to 
types of measurement models, cost/utility functions,
energy and topology constraints, and length of time 
horizon (one-time ahead, finite time, infinite time)
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STATE OF THE ART: SENSOR SELECTION
¢ Sensor selection for different types of measurement 

models:
a) Linear measurement model (commonly studied): closed 

form of estimation distortion (namely, mean squared error) w.r.t. 
sensor selection variables [JoshiBoyd'09] (and many others)

b) Non-linear measurement model:  No closed form of estimation 
distortion w.r.t. selection variables; alternative performance 
measure of sensor selection: entropy, mutual information, Fisher 
information (inverse of Cramér-Rao lower bound on estimation 
error) [JWFisher'03, WangEstrin’04, ZuoPKV’07, 
ShenLiuPKV'14, ChepuriLeus’15]

c) Quantized measurement: No closed form of estimation 
distortion w.r.t. selection variables; alternative performance 
measure used while incorporating the effect of quantization 
[ZuoPKV’08, MasazadePKV'10]
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¢ Sensor selection Under Noise/Signal correlation:
a) Uncorrelated measurement noise (commonly studied): 

observations are conditionally independent given the underlying 
parameter; each sensor contributes to Fisher information in an 
additive manner [JoshiBoyd'09, ChepuriLeus’15] (and many others)

b) Weakly correlated measurement noise: noise covariance 
matrix has small off-diagonal entries; assumption of weak noise 
correlation facilitates problem formulation and has computational 
merits [Jamali-Rad’14, ShenPKV’14]

c) Arbitrary noise correlation: involved formulation but efficient 
solution has been found recently [LiuPKV’16]    
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STATE OF THE ART: SENSOR SELECTION



¢ Sensor selection for different cost/utility functions and 
constraints:
a) Choice of cost/utility function relies on types of 

measurement models: 
¢ Mean squared error: linear measurement model
¢ Information measures including Shannon and Fisher: non-linear 

measurement model [Zhao’02, JWFisher'03] 

b) Constraints on sensor selection:
¢ Number of selected sensors (commonly used)
¢ Sensor Coverage: geographically distributed sensor nodes to 

ensure network-wide sensing coverage [Wang’11] 
¢ Energy harvesting constraints: sensors with energy harvester 

subject to causality constraints of power flow [LiuWangPKV’16,
Calvo-Fullana’16] 11

STATE OF THE ART: SENSOR SELECTION



STATE OF THE ART: SENSOR SCHEDULING

a) Sensor scheduling for linear dynamical systems 
(finite time horizon)
• Scheduling continuous/discrete-time Kalman filters 

[MoSinopoli'11]
• Sensor scheduling via design of sparse Kalman filter gain 

matrices [MasazadePKV'12]
• Compressive sensing based probabilistic sensor scheduling for 

target tracking [CaoPKV’15]

b) Sensor scheduling for non-linear dynamical systems 
(finite time horizon)
• Recursive Fisher information or Posterior Cramér-Rao lower 

bound as surrogate performance measure for nonlinear 
systems [ZuoPKV’07, ShenPKV’14, ChepuriLeus’15]
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STATE OF THE ART: SENSOR SCHEDULING

c) Sensor scheduling for linear dynamical systems 
(infinite time horizon)

• Optimal sensor schedule for an infinite horizon problem can be 
approximated arbitrarily well by a periodic schedule with a 
finite period [Shi’11, Tomlin’12]

• Periodic switching policy using lower bound on the performance 
of scheduling sensors over an infinite time [Ny’11]

• Determine optimal periodic sensor schedules by designing 
optimal sparse Kalman filter gain matrices under periodicity 
conditions [LiuPKV’14]
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STATE OF THE ART: DISTRIBUTED ALGORITHMS

¢ Distributed sensor selection: In the absence of the fusion 
center, sensor selection is carried out in a distributed way and 
by the sensors themselves

¢ Why is this important? Robust to failure of FC, low 
communication burden between sensors and FC 

¢ Why is this difficult? Each sensor has access only to the 
information in its neighborhood; Make a global decision based 
on local data & local communications
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STATE OF THE ART: DISTRIBUTED ALGORITHMS

¢ Distributed algorithms

¢ Greedy algorithm based on submodular utility function 
(with diminishing return property) [Krause’10]

¢ Distributed sensor selection for parameter estimation 
under linear Gaussian model with weakly correlated 
measurement noise [Jamali-Rad’15]

¢ Distributed sensor selection for estimation of spatially-
correlated random field [LiuHero’16]
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SENSOR COLLABORATION

¢ Sensor collaboration: Determine optimal inter-sensor 
communication strategies (namely, collaboration links) in 
order to enhance the estimation performance under limited 
network resources
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STATE OF THE ART: SENSOR COLLABORATION

¢ Approaches for sensor collaboration
• Power allocation for communication systems with fully-

connected collaboration network[Fang’09, Fanaei’14]
• Sensor selection and power allocation under given network 

topologies: tree, branch, linear [Mitra’06, Mitra’08]
• Linear coherent estimation with spatial collaboration under 

arbitrary known network topologies [KarPKV’13]
• Sensor collaboration with unknown network topologies: jointly 

optimize sensor-to-sensor (collaboration) and sensor-to-FC 
(selection) schemes [LiuPKV’15]

• Sensor collaboration in the presence of temporal dynamics: 
determine inter-sensor communication strategy while tracking 
a random process rather than estimating a static parameter  
[KarPKV’12, LiuPKV’16]
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CROWDSOURCING BASED WSNS

Almost everyone has devices with built-in sensors 

Crowdsourcing
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CROWDSOURCING BASED WSNS
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Target

Fusion
Center



CROWDSOURCING BASED WSNS
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The users may not participate in sensing and 
inference tasks unless suitable incentives are 
provided to them.

http://optimization.asu.edu/papers/XUE-CNF-2012-MOBICOM-MPSensing-Slides.pdf

Sensor management



STATE OF THE ART: CROWDSOURCING BASED
WSNS

Sensor management in crowdsourcing based WSNs
¢ Concept [Mullen’06]
¢ Walrasian equilibrium based sensormanagement [Chavali,

Nehorai’12],[Masazade, Varshney’13]
¢ Auction design for resource management [Yang’16], [Chen’16]
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TARGET TRACKING IN WIRELESS
SENSOR NETWORKS
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TARGET TRACKING
TARGET DYNAMICS
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¢ Target motion dynamics:

¢ Isotropic power attenuation model of target:

¢ Signal amplitude received by sensor i at time 
step t:

Target location Target velocity

i.i.d Gaussian noise 

Power at distance 0

Distance between target and sensor i



TARGET TRACKING
SENSOR MEASUREMENTS

¢ Uncertainty in wireless sensor networks
� Random interruptions in the channel
� Sensor failures
� Jamming or interference
� Obstacles

¢ Unreliable analog sensor measurements

¢ Probabilistic model: 

25



TARGET TRACKING
SENSOR MEASUREMENTS

¢ Quantized sensor measurements:

¢ Probabilistic model 
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TARGET TRACKING
FILTER

¢ Estimation of the target location is based on the 
posterior probability density function (pdf)

¢ Recursive filter for estimation: 
� Predict the target location with posterior pdf
� Update the estimate using the sensor measurements

27



¢ Particle filter:
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PARTICLE FILTERING



SENSOR MANAGEMENT

¢ Weights in particle filtering are updated through 
measurements from selected sensors

¢ Sensor management criteria: estimation lower 
bound, Fisher information, mutual information…
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FISHER INFORMATION
¢ Cramer-Rao lower bound (CRLB): lower bound for 

estimation performance

¢ Fisher information (FI): inverse of CRLB

� FI for analog sensor measurement model
� FI for quantized sensor measurement model

30



MUTUAL INFORMATION

¢ Mutual information (MI) for analog sensor 
measurement model

¢ Mutual information for quantized sensor 
measurement model

¢ Mutual information upper bound (MIUB)
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SIMULATION: WSN
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SIMULATION: ANALOG DATA, 5-BIT
QUANTIZED DATA, AND 2-BIT QUANTIZED
DATA
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Target tracking performance with analog data, 5-bit quantized data, 
and 2-bit quantized data, (a) MSE performance; 
(b) average percentage of reliable sensors selected.

(a) (b)

MI selects more reliable sensors – better MSE



SIMULATION: MI AND MIUB
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Target tracking performance for MI and MIUB, $A=2$.



MOP BASED SENSOR MANAGEMENT

¢ Number of sensors to be selected not predetermined

¢ Multiple objectives:

35

Lifetime (max)

Detection capability (max)

Information gain (max)

Estimation error (min)

Energy costs (min)

Communication costs (min)

Deployment costs (min)

Conflicting



MOP BASED SENSOR MANAGEMENT

¢ Sensor management in existing literature:
� Maximize information gain (or minimize error 

metric), subject to a constraint on the number of 
sensors

¢ MOP based sensor management
� Determines the optimal sensor set (the number of 

sensors and which sensors)
� Saves resources: use more or less sensors as needed

36

Selection state of 
sensor i at time step t



MOP BASED SENSOR MANAGEMENT
OBJECTIVE FUNCTIONS

¢ FI based objective function

¢ MIUB based objective function

¢ Sensor cardinality based objective function

37

Information gap between 
all sensors and selected 
sensors



¢ n objective optimization problem:

¢ Feasible solutions: those that satisfy constraints
¢ Solution     dominates  

if and only if 

¢ is called a Pareto optimal 
solution if and only if there is 
no     that dominates
¢ Utopia point: at which all objectives are minimized

38

MULTIOBJECTIVE OPTIMIZATION
PROBLEM (MOP)

1

1. http://www.noesissolutions.com/Noesis/sites/default/files/Pareto_Front.png



¢ Weighted sum:
� Uniform spread of Pareto solutions not guaranteed
� Reduce design alternatives 1

¢ Nondominating sorting genetic algorithm-II 
(NSGA-II)2

� Sort individuals according to level of nondomination
� Store nondominated solutions
� Guarantee diversity

39

SOLVING MOP

1. R. T. Marler et al., 2004
2. K. Deb et al., 2002



¢ Knee point solution
� Small sacrifice in one objective results in a large gain 

in another

¢ Compromise solution (CS)
� Closest to Utopia point

40

SOLUTION SELECTION



SIMULATION: WSN
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SIMULATION: PARETO FRONT
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Pareto optimal front obtained by using NSGA-II at time step t=3 and t=6,
(a) FI; (b) MIUB
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SIMULATION: SOLUTION SELECTION
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Tracking performance at each time step 
with different solution selection methods.



SIMULATION: NSGA-II, CVX, WS
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Tracking performance for MOP with NSGA-II, convex relaxation, 
and weighted sum methods (a) MSE for MIUB; (b) MSE for FI.
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WS rarely produces a uniform spread of points on the Pareto front with a uniform 
spread of weights
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46Sensors

Cloud 
platform

Users

Permission

Data

Data

Request

CLOUD SENSING



A FEW CLOUD SENSING EXAMPLES

¢ Find lost/stolen items
¢ Spectrum Sensing in Cognitive Radio nets.
¢ Customer need assessment using embedded 

sensors
¢ Smart Cities

47



48Perera, Charith, et al. "Sensing as a service model for smart cities supported by internet of things’’.
Transactions on Emerging Telecommunications Technologies 25.1 (2014): 81-93.

CLOUD SENSING EXAMPLE
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FC: provides the service of finding the target in the WSN
User: wants to find the target by paying the FC for the service

Problem encompasses Signal Processing and Economics.

BILATERAL MECHANISM FRAMEWORK
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When to trade?
How much to pay?

How to manage the sensors in the WSN?
How to define the utilities?

BILATERAL MECHANISM FRAMEWORK



MECHANISM DESIGN FACTORS

i. Individual rationality (IR)
v Non-negative utilities. 
v Guarantees the participation of the users.

ii. Incentive compatibility (IC)
v Utility of telling truth ≥ Utility of lying.
v Ensures honest reporting.
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MECHANISM DESIGN FACTORS

iii. Ex post efficiency
� Buyer gets the service whenever his/her total gain is 

greater than the cost of service provisioning.
� Seller does not provide the service whenever the cost 

of service provisioning is greater than the buyer’s 
gain.
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MECHANISM DESIGN FACTORS

¢ Maximize the social welfare – the total expected 
utilities of the FC and the user 
� Need to define utility functions

¢ Investigate the IR, IC and ex post efficiency
properties of the mechanism
� Need to define IR, IC and ex post efficiency

¢ Formulate the optimization problem

53



UTILITY DEFINITION
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Expected utility

Private valuations

Value of gain Payment

Probability of trade

Payment

Payment Value of cost

(Per unit gain) (Per unit cost)

Sensor selection state

Cost 

Gain



DEFINITION OF IR AND IC
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Private valuation User: FC:

Untruthful valuation User: FC:
Utility User: FC:

IR condition

IC condition

User:

FC:

User:

FC:

Utility if lying

Utility if lying

GainUtility if honest Cost



DEFINITION OF EX POST EFFICIENCY

¢ For an ex post efficient bilateral mechanism, the 
trading probability is

56

Private valuation User: FC:

User’s valuation of gain

FC’s valuation of cost



OPTIMIZATION PROBLEM
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Total social welfare

IR and IC

Design trading probability and payment function
using KKT conditions

Objective

Private valuation User: FC:
Utility User: FC:

Impossibility of ex post efficiency
has been proved
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INTRODUCTION

¢ Crowdsourcing

¢ Energy consumption – incentive is needed

¢ Fusion center designs optimal auction 
mechanism to buy data from users – gets the 
optimal solution of from whom to buy data and 
how much to pay to the winning user
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INTRODUCTION
REVERSE AUCTION
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Bidder 2Bidder 1

Auctioneer
From whom to buy??

I will ask for $30 I will ask for $50

Fusion center

Users

Information 
about target

Value estimate per unit energy cost



INTRODUCTION
REVERSE AUCTION
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Sensor Value estimate 
per unit energy cost

Fusion center

Decide from whom to buy
& how much to pay



MECHANISM DESIGN

¢ Optimization
� Maximize expected utility of FC
� Subject to IR, IC, and resource constraints

¢ Analyze the constraints
¢ Find an equivalent optimization problem
¢ Solve the optimization problem through dynamic

programming method or convex optimization
method

62

Profit



AUCTION DESIGN WITH OTHER
CONSIDERATIONS

¢ Sensors send quantized bids to the FC (Because 
of limited resources or privacy issues)

63

Bidder Value estimate 
per unit energy cost

Fusion center

• Bandwidth/resource constraint
• Privacy issues

Quantized value estimate

State of Charge (SOC)



SUMMARY

¢ Overview of sensor management problems 
including state-of-the-art discussion

¢ Multi-objective optimization problem based 
sensor management
� Dynamic sensor selection

¢ Optimal auction design for sensor management 
problems
� Crowdsourcing
� Optimization
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SUMMARY

¢ Open research problems 
� Joint distributed sensor management and parameter 

estimation
� Non-parametric sensor selection based on online 

streaming data
� Scalable methods for large-scale networks
� Other inference problems: detection and classification
� Graph signal processing problems such as topology 

design/inference for suitable objective functions
� Privacy issues need to be considered in 

crowdsourcing based WSNs
� Sensor management in fully autonomous sensor 

networks 65



Thank You!
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