SENSOR MANAGEMENT FOR ESTIMATION IN WIRELESS SENSOR NETWORKS

Pramod K. Varshney

Joint work with Nianxia Cao, Sijia Liu, Swastik Brahma and many others Department of Electrical Engineering and Computer Science Syracuse University Nov 2, 2016

OUTLINE

• Introduction

- Sensor management: Motivation and problem formulation
- State of the art
- Sensor management approaches
 - Sensor management in WSNs
 - Multi-objective optimization (MOP) based sensor management for target tracking with uncertainty
 - Sensor management in crowdsourcing based WSNs
 Cloud sensing enabled target localization
- Concluding remarks

SENSOR MANAGEMENT IN WSNS

• Power consumption profile of sensor nodes

• Limited resources (energy, bandwidth, etc.)

- Proper management
 - Energy: conserve to prolong lifetime of the WSN
 - Bandwidth: more efficient transmission

SENSOR MANAGEMENT FOR ESTIMATION IN WSNS

- Sensor networks for estimation: Environment/health monitoring, target localization and tracking
- Limited network resources: Sensor battery power, communication bandwidth, storage and computing capacity
- **Resource management:** Optimal sensor selection/scheduling, optimal inter-sensor collaboration

SENSOR MANAGEMENT FOR ESTIMATION IN WSNS

- **Resource management:** Optimal sensor selection/scheduling, optimal inter-sensor collaboration
 - a) **Sensor selection/scheduling:** Find optimal tradeoff between estimation accuracy and sensor activations over space and/or time
 - b) Sensor collaboration: Find optimal inter-sensor communication topology and power allocation scheme

SENSOR SELECTION

- Sensor selection (myopic/one-time ahead): Select optimal subset of sensors in space to minimize estimation error (or other performance measure) subject to energy constraints (or other constraints)
- **Example:** sensor selection for field estimation

SENSOR SCHEDULING

- Sensor scheduling (multiple-time ahead/non-myopic): Seek optimal sensor schedules in *both space and time*
- For example, sensor scheduling for target tracking

Figure: sensor schedule at t = 10 (left); sensor schedule at t = 24 (right)

STATE OF THE ART: SENSOR SELECTION/SCHEDULING

• Sensor selection/scheduling: several variations of the problems have been addressed according to types of measurement models, cost/utility functions, energy and topology constraints, and length of time horizon (one-time ahead, finite time, infinite time)

STATE OF THE ART: SENSOR SELECTION

- Sensor selection for different types of measurement models:
 - a) Linear measurement model (commonly studied): *closed form* of estimation distortion (namely, mean squared error) w.r.t. sensor selection variables [JoshiBoyd'09] (and many others)
 - b) Non-linear measurement model: *No closed form* of estimation distortion w.r.t. selection variables; *alternative performance* measure of sensor selection: entropy, mutual information, Fisher information (inverse of Cramér-Rao lower bound on estimation error) [JWFisher'03, WangEstrin'04, ZuoPKV'07, ShenLiuPKV'14, ChepuriLeus'15]
 - c) Quantized measurement: *No closed form* of estimation distortion w.r.t. selection variables; alternative performance measure used while incorporating the effect of quantization [ZuoPKV'08, MasazadePKV'10]

STATE OF THE ART: SENSOR SELECTION

- Sensor selection Under Noise/Signal correlation:
 - a) Uncorrelated measurement noise (commonly studied): observations are *conditionally independent* given the underlying parameter; each sensor contributes to Fisher information in an *additive* manner [JoshiBoyd'09, ChepuriLeus'15] (and many others)
 - b) Weakly correlated measurement noise: noise covariance matrix has small off-diagonal entries; assumption of weak noise correlation facilitates problem formulation and has computational merits [Jamali-Rad'14, ShenPKV'14]
 - c) Arbitrary noise correlation: involved formulation but efficient solution has been found recently [LiuPKV'16]

STATE OF THE ART: SENSOR SELECTION

- Sensor selection for different cost/utility functions and constraints:
 - a) Choice of cost/utility function relies on types of measurement models:
 - Mean squared error: linear measurement model
 - Information measures including Shannon and Fisher: non-linear measurement model [Zhao'02, JWFisher'03]

b) Constraints on sensor selection:

- Number of selected sensors (commonly used)
- Sensor Coverage: geographically distributed sensor nodes to ensure network-wide sensing coverage [Wang'11]
- Energy harvesting constraints: sensors with energy harvester subject to causality constraints of power flow [LiuWangPKV'16, Calvo-Fullana'16]

STATE OF THE ART: SENSOR SCHEDULING

- a) Sensor scheduling for linear dynamical systems (finite time horizon)
 - Scheduling continuous/discrete-time Kalman filters [MoSinopoli'11]
 - Sensor scheduling via design of sparse Kalman filter gain matrices [MasazadePKV'12]
 - Compressive sensing based probabilistic sensor scheduling for target tracking [CaoPKV'15]

b) Sensor scheduling for non-linear dynamical systems (finite time horizon)

• Recursive Fisher information or Posterior Cramér-Rao lower bound as surrogate performance measure for nonlinear systems [ZuoPKV'07, ShenPKV'14, ChepuriLeus'15]

STATE OF THE ART: SENSOR SCHEDULING

c) Sensor scheduling for linear dynamical systems (infinite time horizon)

- Optimal sensor schedule for an infinite horizon problem can be approximated arbitrarily well by a periodic schedule with a finite period [Shi'11, Tomlin'12]
- Periodic switching policy using lower bound on the performance of scheduling sensors over an infinite time [Ny'11]
- Determine optimal periodic sensor schedules by designing optimal sparse Kalman filter gain matrices under periodicity conditions [LiuPKV'14]

STATE OF THE ART: DISTRIBUTED ALGORITHMS

- **Distributed sensor selection:** In the absence of the fusion center, sensor selection is carried out in a distributed way and by the sensors themselves
- Why is this important? Robust to failure of FC, low communication burden between sensors and FC
- Why is this difficult? Each sensor has access only to the information in its neighborhood; Make a global decision based on local data & local communications

STATE OF THE ART: DISTRIBUTED ALGORITHMS

• Distributed algorithms

- Greedy algorithm based on submodular utility function (with diminishing return property) [Krause'10]
- Distributed sensor selection for parameter estimation under linear Gaussian model with weakly correlated measurement noise [Jamali-Rad'15]
- Distributed sensor selection for estimation of spatiallycorrelated random field [LiuHero'16]

SENSOR COLLABORATION

• Sensor collaboration: Determine optimal inter-sensor communication strategies (namely, collaboration links) in order to enhance the estimation performance under limited network resources

STATE OF THE ART: SENSOR COLLABORATION

• Approaches for sensor collaboration

- Power allocation for communication systems with *fullyconnected* collaboration network[Fang'09, Fanaei'14]
- Sensor selection and power allocation under *given network topologies: tree, branch, linear* [Mitra'06, Mitra'08]
- Linear coherent estimation with spatial collaboration under *arbitrary known network topologies* [KarPKV'13]
- Sensor collaboration with *unknown* network topologies: jointly optimize sensor-to-sensor (collaboration) and sensor-to-FC (selection) schemes [LiuPKV'15]
- Sensor collaboration in the presence of temporal dynamics: determine inter-sensor communication strategy while tracking a random process rather than estimating a static parameter [KarPKV'12, LiuPKV'16]

CROWDSOURCING BASED WSNs

18

Almost everyone has devices with built-in sensors

CROWDSOURCING BASED WSNS

CROWDSOURCING BASED WSNS

The users may not participate in sensing and inference tasks unless suitable incentives are provided to them.

STATE OF THE ART: CROWDSOURCING BASED WSNS

Sensor management in crowdsourcing based WSNs

- Concept [Mullen'06]
- Walrasian equilibrium based sensor management [Chavali, Nehorai'12],[Masazade, Varshney'13]
- Auction design for resource management [Yang'16], [Chen'16]

OUTLINE

• Introduction

- Sensor management: Motivation and problem formulation
- State of the art

• Sensor management approaches

- Sensor management in WSNs
 - Multi-objective optimization (MOP) based sensor management for target tracking with uncertainty
- Sensor management in crowdsourcing based WSNs
 Cloud sensing enabled target localization
- Concluding remarks

TARGET TRACKING IN WIRELESS SENSOR NETWORKS

23

TARGET TRACKING TARGET DYNAMICS

• Target motion dynamics: $\mathbf{x}_{t+1} = \mathbf{F}\mathbf{x}_t + w_t$ $\mathbf{x}_t = \begin{bmatrix} x_t & y_t & \dot{x}_t & \dot{y}_t \end{bmatrix}^T$ i.i.d Gaussian noise Target location Target velocity

• Isotropic power attenuation model of target:

 $P_{i,t}(\mathbf{x}_t) = \frac{P_0 \longrightarrow \text{Power at distance } 0}{1 + \alpha d_{i,t}^n} \xrightarrow{\text{Power at distance } 0} \text{Distance between target and sensor } i$

• Signal amplitude received by sensor *i* at time step *t*: $h_{i,t}(\mathbf{x}_t) = \sqrt{P_{i,t}(\mathbf{x}_t)}$

TARGET TRACKING SENSOR MEASUREMENTS

- Uncertainty in wireless sensor networks
 - Random interruptions in the channel
 - Sensor failures
 - Jamming or interference
 - Obstacles
- Unreliable analog sensor measurements

$$z_{i,t} = \begin{cases} h_{i,t}(\mathbf{x}_t) + v_{i,t}, & \text{with probability } p_s^{(i)} \\ v_{i,t}, & \text{with probability } 1 - p_s^{(i)} \end{cases}$$

• Probabilistic model:

$$p(z_{i,t}|\mathbf{x}_t) = p_s^{(i)} \mathcal{N}(h_{i,t}(\mathbf{x}_t), \sigma^2) + (1 - p_s^{(i)}) \mathcal{N}(0, \sigma^2)$$

TARGET TRACKING Sensor Measurements

• Quantized sensor measurements:

$$D_{i,t} = \begin{cases} 0 & -\infty < z_{i,t} < \eta_1 \\ 1 & \eta_1 < z_{i,t} < \eta_2 \\ \vdots & \\ L - 1 & \eta_{(L-1)} < z_{i,t} < \infty \end{cases}$$

• Probabilistic model

$$p(D_{i,t} = l | \mathbf{x}_t) = \Pr(\eta_l \le z_{i,t} \le \eta_{l+1} | \mathbf{x}_t)$$

= $p_s^{(i)} \Pr(\eta_l \le z_{i,t} \le \eta_{l+1} | z_{i,t} \sim \mathcal{N}(h_{i,t}(\mathbf{x}_t), \sigma^2))$
+ $(1 - p_s^{(i)}) \Pr(\eta_l \le z_{i,t} \le \eta_{l+1} | z_{i,t} \sim \mathcal{N}(0, \sigma^2))$

TARGET TRACKING FILTER

- Estimation of the target location is based on the posterior probability density function (pdf)
- Recursive filter for estimation:
 - **Predict** the target location with posterior pdf
 - Update the estimate using the sensor measurements

PARTICLE FILTERING

• Particle filter: $f(\mathbf{x}_t | \mathbf{D}_{1:t}) \approx \sum_{i=1}^{N_s} w_t^s \delta(\mathbf{x}_t - \mathbf{x}_t^s)$

 $w_{t+1}^s \propto f(\mathbf{D}_{t+1}|\mathbf{x}_{t+1}^s)$ (Updating weights)

 $w_{t+1}^{s} = \frac{w_{t+1}^{s}}{\sum_{s=1}^{N_{s}} w_{t+1}^{s}} \text{ (Normalizing weights)}$ $\mathbf{\hat{x}}_{t+1} = \sum_{s=1}^{N_{s}} w_{t+1}^{s} \mathbf{x}_{t+1}^{s}$ $\{\mathbf{x}_{t+1}^{s}, N_{s}^{-1}\} = \text{Resampling}(\mathbf{x}_{t+1}^{s}, w_{t+1}^{s})$

Sensor Management

- Weights in particle filtering are updated through measurements from selected sensors
- Sensor management criteria: estimation lower bound, Fisher information, mutual information...

FISHER INFORMATION

- Cramer-Rao lower bound (CRLB): lower bound for estimation performance
- Fisher information (FI): inverse of CRLB

$$E\left\{\left[\hat{\mathbf{x}}_t - \mathbf{x}_t\right]\left[\hat{\mathbf{x}}_t - \mathbf{x}_t\right]^T\right\} \ge J_t^{-1}$$

$$\begin{aligned} \mathbf{J}_t &= E[-\Delta_{\mathbf{x}_t}^{\mathbf{x}_t} \log p(\mathbf{D}_t, \mathbf{x}_t)] \\ &= E[-\Delta_{\mathbf{x}_t}^{\mathbf{x}_t} \log p(\mathbf{D}_t | \mathbf{x}_t)] + E[-\Delta_{\mathbf{x}_t}^{\mathbf{x}_t} \log p(\mathbf{x}_t)] \\ &= \mathbf{J}_t^D + \mathbf{J}_t^P \end{aligned}$$

- FI for analog sensor measurement model
- FI for quantized sensor measurement model

MUTUAL INFORMATION

• Mutual information (MI) for analog sensor measurement model

 $I(\mathbf{z}_t; \mathbf{x}_t) = H(\mathbf{z}_t) - H(\mathbf{z}_t | \mathbf{x}_t)$

• Mutual information for quantized sensor measurement model

 $I(\mathbf{D}_t; \mathbf{x}_t) = H(\mathbf{D}_t) - H(\mathbf{D}_t | \mathbf{x}_t)$

• Mutual information upper bound (MIUB)

$$I(\mathbf{z}_t; \mathbf{x}_t) = \sum_{i=1}^N I(z_{i,t}; \mathbf{x}_t | z_{i-1,t}, \cdots, z_{1,t})$$
$$\leq I(z_{i,t}; \mathbf{x}_t | z_{i-1,t}, \cdots, z_{2,t})$$
$$\leq I(z_{i,t}; \mathbf{x}_t).$$

31

SIMULATION: WSN

32

SIMULATION: ANALOG DATA, **5-BIT QUANTIZED DATA, AND 2-BIT QUANTIZED DATA**

Target tracking performance with analog data, 5-bit quantized data, and 2-bit quantized data, (a) MSE performance; (b) average percentage of reliable sensors selected.

MI selects more reliable sensors – better MSE

SIMULATION: MI AND MIUB

Target tracking performance for MI and MIUB, \$A=2\$.

34

MOP BASED SENSOR MANAGEMENT

Conflicting

- Number of sensors to be selected not predetermined
- Multiple objectives:

Lifetime (max)

Detection capability (max)

Information gain (max)

Estimation error (min)

Energy costs (min)

Communication costs (min)

Deployment costs (min)

35

MOP BASED SENSOR MANAGEMENT

• Sensor management in existing literature:

• Maximize information gain (or minimize error metric), subject to a constraint on the number of

sensors

$$\max_{\alpha} \operatorname{log det} \left(\sum_{i=1}^{N} \alpha_{i,t} \mathbf{J}_{i,t}^{D} + \mathbf{J}_{t}^{P} \right)$$
subject to
$$\sum_{i=1}^{N} \alpha_{i,t} \leq A$$
Selection state of
sensor *i* at time step *t*

- MOP based sensor management
 - Determines the **optimal** sensor set (the number of sensors and which sensors)
 - Saves **resources**: use more or less sensors as needed
MOP BASED SENSOR MANAGEMENT OBJECTIVE FUNCTIONS

• FI based objective function

$$f_1(\boldsymbol{\alpha}_t) = \frac{\log \det \left(\sum_{i=1}^N J_{i,t}^D + J_t^P\right) - \log \det \left(\sum_{i=1}^N \alpha_{i,t} J_{i,t}^D + J_t^P\right)}{\log \det \left(\sum_{i=1}^N J_{i,t}^D + J_t^P\right)}$$

• MIUB based objective function

$$f_1(\boldsymbol{\alpha}_t) = \frac{\sum_{i=1}^{N} I^{(i)} - \sum_{i=1}^{N} \alpha_{i,t} I^{(i)}}{\sum_{i=1}^{N} I^{(i)}}$$

Information gap between all sensors and selected sensors

• Sensor cardinality based objective function

$$f_2(\boldsymbol{\alpha}_t) = \frac{1}{N} \sum_{i=1}^N \alpha_{i,t}$$

37

MULTIOBJECTIVE OPTIMIZATION PROBLEM (MOP)

n objective optimization problem: 0

> {f₁($\boldsymbol{\alpha}$), f₂($\boldsymbol{\alpha}$), ..., f_n($\boldsymbol{\alpha}$)} min

subject to $a \leq \alpha_i \leq b, h(\boldsymbol{\alpha}) = 0, g(\boldsymbol{\alpha}) \leq 0$

Pareto Frontiei

Infeasible Poin

Utopia Point

- Feasible solutions: those that satisfy constraints
- Solution α^1 dominates $\alpha^2 (\alpha^1 \succ \alpha^2)$ if and only if Objective 2 (e.g. cost)

$$f_u(\boldsymbol{\alpha}^1) \leq f_u(\boldsymbol{\alpha}^2) \quad \forall u \in \{1, 2, \dots n\}$$

 $\mathbf{f}_v(\boldsymbol{\alpha}^1) < \mathbf{f}_v(\boldsymbol{\alpha}^2) \quad \exists v \in \{1, 2, \dots n\}$

• α^* is called a Pareto optimal solution if and only if there is no α that dominates α^*

Utopia point: at which all objectives are minimized

1. http://www.noesissolutions.com/Noesis/sites/default/files/Pareto_Front.png

1

easible Poir

Pareto Point

Objective 1

SOLVING MOP

- Weighted sum: $w_1 f_1(\boldsymbol{\alpha}_t) + (1 w_1) f_2(\boldsymbol{\alpha}_t)$
 - Uniform spread of Pareto solutions not guaranteed
 - Reduce design alternatives ¹
- Nondominating sorting genetic algorithm-II (NSGA-II)²
 - Sort individuals according to level of nondomination
 - Store nondominated solutions
 - Guarantee diversity

- 1. R. T. Marler et al., 2004
- 2. K. Deb et al., 2002

Objective 1

SOLUTION SELECTION

- Knee point solution
 - Small sacrifice in one objective results in a large gain in another

SIMULATION: WSN

41

SIMULATION: PARETO FRONT

Pareto optimal front obtained by using NSGA-II at time step t=3 and t=6, (a) FI; (b) MIUB

SIMULATION: SOLUTION SELECTION

Tracking performance at each time step with different solution selection methods.

SIMULATION: NSGA-II, CVX, WS

Tracking performance for MOP with NSGA-II, convex relaxation, and weighted sum methods (a) MSE for MIUB; (b) MSE for FI.

WS rarely produces a uniform spread of points on the Pareto front with a uniform spread of weights

OUTLINE

• Introduction

- Sensor management: Motivation and problem formulation
- State of the art
- Sensor management
 - Sensor management in WSNs
 - Multi-objective optimization (MOP) based sensor management for target tracking with uncertainty
 - Sensor management in crowdsourcing based WSNs
 - Cloud sensing enabled target localization
- Concluding remarks

CLOUD SENSING

A FEW CLOUD SENSING EXAMPLES

- Find lost/stolen items
- Spectrum Sensing in Cognitive Radio nets.
- Customer need assessment using embedded sensors
- Smart Cities

CLOUD SENSING EXAMPLE

Perera, Charith, et al. "Sensing as a service model for smart cities supported by internet of things". *Transactions on Emerging Telecommunications Technologies* 25.1 (2014): 81-93.

BILATERAL MECHANISM FRAMEWORK

FC: provides the service of finding the target in the WSN **User**: wants to find the target by paying the FC for the service

Problem encompasses Signal Processing and Economics.

BILATERAL MECHANISM FRAMEWORK

MECHANISM DESIGN FACTORS

- i. Individual rationality (IR)
 - * Non-negative utilities.
 - * Guarantees the participation of the users.
- ii. Incentive compatibility (IC)
 - * Utility of telling truth \geq Utility of lying.
 - * Ensures honest reporting.

MECHANISM DESIGN FACTORS

iii. Ex post efficiency

- Buyer gets the service whenever his/her total gain is greater than the cost of service provisioning.
- Seller does not provide the service whenever the cost of service provisioning is greater than the buyer's gain.

MECHANISM DESIGN FACTORS

• Maximize the social welfare – the total expected utilities of the FC and the user

- Need to define utility functions
- Investigate the IR, IC and ex post efficiency properties of the mechanism
 - Need to define IR, IC and ex post efficiency
- Formulate the optimization problem

UTILITY DEFINITION

Private valuations \mathcal{V}_{C} (Per unit gain) \mathcal{V}_{f} (Per unit cost) $v_{c} \sim f_{c} : [a_{c}, b_{c}] \rightarrow \mathbf{R}_{+}$ $v_{f} \sim f_{f} : [a_{f}, b_{f}] \rightarrow \mathbf{R}_{+}$ Expected utility $U_{c}(v_{c})$ $U_{f}(v_{f})$ $\bar{p}_{c}(v_{c}) [v_{c}G(\mathbf{z})] - \bar{x}_{c}(v_{c})$ $\bar{x}_{f}(v_{f}) - \bar{p}_{f}(v_{f}) [v_{f}C(\mathbf{z})]$ Value of gain PaymentPaymentValue of cost

DEFINITION OF IR AND IC IR condition User: $U_c(v_c) \ge 0$ **FC:** $U_f(v_f) \ge 0$ **Utility if lying** User: $U_c(v_c) \ge \bar{p}_c(w_c) \left[v_c G(\mathbf{z}) \right] - \bar{x}_c(w_c)$ **IC condition** Gain **Utility if honest** Cost FC: $U_f(v_f) \ge \bar{x}_f(w_f) - \bar{p}_f(w_f) \left[v_f C(\mathbf{z}) \right]$ Utility if lying **Private valuation** User: v_c **FC**: v_f Untruthful valuation User: w_c $\mathbf{FC}: w_f$ **User:** $U_c(v_c)$ Utility **FC:** $U_f(v_f)$

55

DEFINITION OF EX POST EFFICIENCY

• For an ex post efficient bilateral mechanism, the trading probability is

 $p(v_f, v_c) = \begin{cases} 1 & \text{if } v_f C(\mathbf{z}) < v_c G(\mathbf{z}) \\ 0 & \text{if } v_f C(\mathbf{z}) > v_c G(\mathbf{z}) \end{cases}$ User's valuation of gain

Private valuation User: $v_c \in [a_c, b_c]$ **FC**: $v_f \in [a_f, b_f]$

OUTLINE

• Introduction

- Sensor management: Motivation and problem formulation
- State of the art
- Sensor management
 - Sensor management in WSNs
 - Multi-objective optimization (MOP) based sensor management for target tracking with uncertainty
 - Sensor management in crowdsourcing based WSNs
 - Cloud sensing enabled target localization
 - Optimal auction design for sensor management in target localization and tracking problems
- Concluding remarks

INTRODUCTION

• Crowdsourcing

• Energy consumption – incentive is needed

• Fusion center designs optimal auction mechanism to buy data from users – gets the optimal solution of *from whom to buy data* and *how much to pay to the winning user*

INTRODUCTION REVERSE AUCTION

60

REVERSE AUCTION

Sensor

Value estimate per unit energy cost

& how much to pay

Decide from whom to buy

INTRODUCTION

MECHANISM DESIGN

- Optimization
 - Maximize expected utility of FC 🔶 Profit
 - Subject to IR, IC, and resource constraints
- Analyze the constraints
- Find an equivalent optimization problem
- Solve the optimization problem through dynamic programming method or convex optimization method

AUCTION DESIGN WITH OTHER CONSIDERATIONS

• Sensors send quantized bids to the FC (Because of limited resources or privacy issues)

SUMMARY

- Overview of sensor management problems including state-of-the-art discussion
- Multi-objective optimization problem based sensor management
 - Dynamic sensor selection
- Optimal auction design for sensor management problems
 - Crowdsourcing
 - Optimization

SUMMARY

• Open research problems

- Joint distributed sensor management and parameter estimation
- Non-parametric sensor selection based on online streaming data
- Scalable methods for large-scale networks
- Other inference problems: detection and classification
- Graph signal processing problems such as topology design/inference for suitable objective functions
- Privacy issues need to be considered in crowdsourcing based WSNs
- Sensor management in fully autonomous sensor networks

Thank You!