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Distributed Inference & Processing
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Deals with the discovery of global information
from local interactions among dispersed agents.

Features:

@ Coordination;
@ In-network processing;
@ Dispersed agents.
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Centralized Processing
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Exchange of data between the dispersed agents
and a fusion center.

@ Cost of communications;
@ Privacy & security considerations;

@ Ciritical point of failure.
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Biological Networks
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Nature provides splendid examples of real-time
decentralized learning & adaptation.

Source: Wikimedia. Source: Wikimedia; Creative Commons License. Source: S. Pratt Lab, ASU.



Bio-Inspired Networked Cognition
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network cooperation network competition

Sayed (Proc. IEEE, April 2014)
Tu & Sayed (IEEE Trans. Sig. Process., August 2011)



Bio-Inspired Radio Mechanism
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-

secondary
user

Available frequency bands 2 modeled as food sources.
Occupied PU bands = modeled as obstacles.

Lorenzo, Barbarossa & Sayed (IEEE Trans. Sig. Process., June 2013)



Optimization & Tracking
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Why Networked Solutions?
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® Data already available at dispersed locations (cloud).
© Power of cooperation = mining of Big Data sets.

@ Privacy and security considerations.

@ Robustness and resilience (biological networks).

@ RObOﬁC swarms (diSQSTer a reCIS). Exploratory mobile agents or swarms

o App + Social networks; healthcare
informatics; smart manufacturing,
mobile health, transportation, energy,...




Adaptive Networks: Opportunities
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® Adaptive agents: learn from streaming data.
o Cooperative agents: interact locally.

© Adaptive topology: re-wire the graph.

o Distributed learning and inference.

New Degrees of Freedom:
— Coordination

- Topology
= Mobility




Adaptive Networks: Challenges
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Challenges:
- Coupled dynamics
—> Selfish behavior
- Privacy & secrecy
- Asymmetries

“Too many cooks spoil the broth.”

“All animals (agents) are equal, but some animals
(agents) are more equal than others.”



Not all agents are equal...
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Quorum response in qnimql g rou ps (Sumpter & Pratt, Phil. Trans. R. Soc., 2009)
Observe sudden turn Observe sudden turn
at this corner at this corner

Tu & Sayed, Proc. Cog. Inform. Process., (2012) Animal Behavior Lab (Couzin, Princeton University)



Interactions: State-Dependent
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ek
agr < Prob (I, = 1|state of /)

k agye \_ \ )

Probability of being an
informed agent.




Regularization; Sparsity; Priors, ..
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Examples:

p||lwl|?, (f3—regularization)
R(w) =1 allwl, (¢1—regularization)
allw|ly + pllw||?, (elastic-net regularization)



Risk and Loss Functions
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Often: & ™ Data:

J(fw) — [k Q(hwa, »-)/) (labels, features)
N— e’ (reference, regressors)



MSE, SVM, Perceptron, Boosting, ...
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Examples:
T .
( (v —h w)?, (quadratic loss)

In (1 + eJYhT“’) : (logistic regression)
Q(RTw, )= =T -
w,Y) =93 e Yhw (exponential loss)

max{0, 1 —~h"w}, (hinge loss)

| max{0, —vh'w}, (Perceptron loss)



Classical Gradient-Descent
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~
arg min J(w)

S
D>

_____________________________

_____________________________




Stochastic Gradient Learning
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\ gradient

M(n) — l/rn noise, R

——— o —————

_____________________________



Performance Measures
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Examples:
¢ limsup E [|w® — w,||? (Mean-square-deviation)
n— oo

¢ limsupE (J(w,)— J(w?)) (Excess-risk))

n—oo

. Prob(error) (Probability of error)



Networked Agents = Coupling

12016

Adaptation and Learning by Networked Agents (A. H. Sayed)

(H17 Rl /
o A

arg mui)n Z J (}

w
k=1
é 2 0
(Heg, Ro) Hk T vak(w )
A : :
R, = gradient noise

\ covariance /
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Influence of Topology

e
o
N

Image from Agents, Interaction, and Complexity Research Group website. University of Southampton.
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Some Relevant Questions
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@ Which topology has best performance?

@ What aspects of the topology influence performance?
@ Can different topologies deliver same performance?
@ Is cooperation always beneficial?

@ Can networks match performance of centralized solutions?



Multi-Agent Network
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Network with N vertices (agents):
° Edges connecting agents.
o Qyk : scales data from £ tok.
e N} :neighbors of agent k.

Strongly-connected network:
path with nonzero weights
between any two agents plus
at least one self-loop (axr > 0).




Combination Policy
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.k A\

(Nxf\:f) /

=1, A'1=1 (left-stochastic)




Perron-Frobenius Theorem
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® A has a single eigenvalue at one.
® All other eigenvalues are strictly inside the unit circle.

® Perron vector:

% {App, ]lszl, pr >0, E=1,2,....N }




Diffusion Learning
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Vin = Whn-1— vaQk(hknwkn 1,Y,(n))

= -

Sayed et al. (2006-2016): Lopes, Cattivelli, Tu, Zhao, Towfic, Chen, Yu, Vlaski, Ying.



Diffusion Learning: Variations
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(
/‘vbk,rn, — Wk n— l_ﬂv’ka hknwkn 1, ’Ylg( ))
< \[
WEn — E afk’ltbﬁ T
. LeN Symmetry ensures stability

regardless of topology!

Variations exist to deal with non-smooth formulations:
— Sub-gradients
— Proximal operators
— Penalty-based



Consensus Strategy
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Wrn = Zaek’we,n—l ka(hZ,n’wk,n—la’Y;@(n))

Decaying step-size asymmetry

Tsitsiklis and Athans (1984)
Boyd and Xiao (2004)
Moura et al (2009)



Consensus Strategy
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—~

Wrn = Z AprWy n—1 — E v’w Qk(hzjnwk,n—lavk(n))

® Solves well optimization problems.

® Problematic for adaptation and learning:
Asymmetry = causes instability
Diminishing step-sizes = limit adaptation & learning



THEOREM A: Stability & Agreement
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limsup E ||wp, . ||* = O(u)

n—oo

limsup E||wy, , — we,||> = o)
n—>00

Zhao & Sayed (IEEE Trans. Signal Process., 2015)



Two (not one) Rates of Convergence!
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@)

\ Convergence rate

determined by | \5(A4)|.

A second convergence rate
determined by a € (0, 1).

Chen & Sayed (IEEE Trans. Infor. Thy., 2015)



Two (not one) Rates of Convergence!
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The second element of the estimated vector

Adaptation and Learning by Networked Agents (A. H. Sayed)

16
| ® Optimal value .
14 ® Diffusion initial iterates ® Agen's CCI'l'Ch up Wli'h

12| © Diffusion iterates g. ® centralized solution

i Reference recursion
107 *  Centroid * .'( .. 0] at rate |A2 (A) .
8 ¢ \.“. o ©

S
! Q ,
B
4f
. i =100 Agents approach
2,
> i =150 steady-state at

or , a second rate (v.
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The first element of the estimated vector

Chen & Sayed (IEEE Trans. Infor. Thy., 2015)



THEOREM B: Scaling Law #1
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/For sufficiently small step-sizes: \

+ o(u)

—> 00

-1 /N
limsup B ||@g,||> = “Tr [(Z pka) (Z piRk)
k=1

N
a = 1=2plnin (Zpkﬂk) + 0 ()

/—1 k=1
\ convergence rate /

Zhao & Sayed (IEEE Trans. Signal Process., 2012)
/ Chen & Sayed (IEEE Trans. Infor. Thy., 2015)




Network of Learners
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n=5x33x 1074
T T T T T T T T
L] H H H H H B

network of learners
/ 1 2 \

10

nun cmperatlve strategy (33b)

ERdi:it,:a.v(?:) (dB)
8

(Metropolis rule)

i i ; ; ; _40 i i i i i i i i i
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p J_ 0 i (iteration index) i (iteration index)




Optimizing the Topology
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N
Ao = argmjnTr (Zp%Hle)
k=1
subject to Ap=p, 1Tp=1, pr >0

)

o
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Tr(H™ " Ry) ‘ Dk max {nkQ%, neé'?}
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Application: Detecting Intruders
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Kg / clustering
intruder
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Zhao & Sayed (IEEE Trans. Signal Process., 2012)




Application: Clustering

Adaptation and Learning by Networked Agents (A. H. Sayed)
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Zhao & Sayed (IEEE Trans. Signal Process., 2015)




THEOREM C: Scaling Law #2
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Binary state of nature represented by
hypotheses H, and H;.

Using large deviation theory and
exact asymptotic analysis, as n — oo.

(false alarm or [ Probk[eITOI'] _ e—(l/u)[a—l—o(l)] ]

mis-detection)

Matta, Braca, Marano & Sayed (IEEE Trans. Infor. Thy, 2016)



Inverse Modeling
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[ Proby[error] = e~ (1/mlato(1)] J

IMPLICATIONS:

® Error probabilities vanish
exponentially with 1/.

Error probability

® Same exponent ¢: parallel curves

® Connectivity matters =2 o(1)

More peripheral agents perform worse.




Fundamental Tradeoff
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Centralized Rate-constrained
Networked inference with N multi-terminal

agents iid obs. inference (CEO)

MSE (distortion)

Error probability

Reducing I plays a role similar to increasing (N, R).
—> Interpretation: W quantifies the cost of information.



What about Weak Graphs?
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Weak connectedness can arise as a result of:

v Intruder attacks by malicious agents;
v’ Failure by some critical links;
v' Presence of stubborn agents;

v Information control;

v Asymmetric information dissemination over social platforms.



Example
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8 agents, S=2 sending sub-networks, and R=1 receiving
sub-networks.
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Mind-Control, Defiance, Reconciliation
o« I 2016

Adaptation and Learning by Networked Agents (A. H. Sayed)
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Ying & Sayed (IEEE Trans. Infor. Theory, 2015)
Salami, Ying, & Sayed (Proc. ICASSP, 2016)




Control Mechanism
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video animation steady-state
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Concluding Remarks
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Interesting phenomena arise when information is
processed in a distributed manner over networks:

Is more better?

Why is one topology better than the other?

How to ensure network stability?

How to adapt the topology and weights?

How to handle selfish agents? Intruderse Outliers?
Bio-inspired cognition. Swarming. Evasion procedures.

- Many challenging open issues ....
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