Adaptation & Learning by Networked Agents

Ali H. Sayed UCLA Electrical Engineering

ALI H. SAYED (www.ee.ucla.edu/asl) UCLA ELECTRICAL ENGINEERING DEPARTMENT

November 2016

Survey Articles

016		
	CONTRIBUTED P A P E R Sayed: Adaptive Networks	
	460 PROCEEDINGS OF THE IEEE Vol. 102, No. 4, April 2014	
Ac	laptive Networks	
By Ali	I H. SAYED, Fellow IEEE	
Video Le	ectures (Inference over Networks @ UCL	A)
	VER	/ER RKS

IEEE Signal Processing Magazine, May 2013

Diffusion Strategies for Adaptation and Learning over Networks

Adaptation, Learning, and Optimization over Networks

Ada

Ali H. Sayed University of California at Los Angeles

now

ved)

Foundations and Trends[®] in Machine Learning Volume 7, Issue 4-5, 2014

the essence of knowledge Boston — Delft

Distributed Inference & Processing

Adaptation and Learning by Networked Agents (A. H. Sayed)

Deals with the discovery of <u>global</u> information from <u>local</u> interactions among <u>dispersed</u> agents.

Features:

- Coordination;
- In-network processing;
- Dispersed agents.

Centralized Processing

Adaptation and Learning by Networked Agents (A. H. Sayed)

1.5

Exchange of data between the dispersed agents and a <u>fusion</u> center.

Cost of communications;

- Privacy & security considerations;
- Critical point of failure.

Biological Networks

Adaptation and Learning by Networked Agents (A. H. Sayed)

Nature provides splendid examples of real-time decentralized learning & adaptation.

Source: Wikimedia; Creative Commons License.

Source: S. Pratt Lab, ASU.

Source: Wikimedia.

Bio-Inspired Networked Cognition

6

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

network competition

Sayed (Proc. IEEE, April 2014) Tu & Sayed (IEEE Trans. Sig. Process., August 2011)

Bio-Inspired Radio Mechanism

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

Available frequency bands \rightarrow modeled as food sources. Occupied PU bands \rightarrow modeled as obstacles.

Lorenzo, Barbarossa & Sayed (IEEE Trans. Sig. Process., June 2013)

Optimization & Tracking

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

Towfic & Sayed (IEEE Trans. Sig. Process., August 2014)

Why Networked Solutions?

Adaptation and Learning by Networked Agents (A. H. Sayed)

- Data already available at dispersed locations (cloud).
- Power of cooperation \rightarrow mining of Big Data sets.
- Privacy and security considerations.
- Robustness and resilience (biological networks).
- Robotic swarms (disaster areas).
 Exploratory mobile agents or swarms
- Apps: Social networks; healthcare informatics; smart manufacturing, mobile health, transportation, energy,...

Adaptive Networks: Opportunities

Adaptation and Learning by Networked Agents (A. H. Sayed)

- Adaptive agents: learn from streaming data.
- Cooperative agents: interact locally.
- Adaptive topology: re-wire the graph.
- Distributed learning and inference.

New Degrees of Freedom:

- \rightarrow Coordination
- \rightarrow Topology
- \rightarrow Mobility

2016

Adaptive Networks: Challenges

Adaptation and Learning by Networked Agents (A. H. Sayed)

Challenges:

- \rightarrow Coupled dynamics
- \rightarrow Selfish behavior
- \rightarrow Privacy & secrecy
- \rightarrow Asymmetries

"Too many cooks spoil the broth."

"All animals (agents) are equal, but some animals (agents) are more equal than others."

Not all agents are equal...

Adaptation and Learning by Networked Agents (A. H. Sayed)

Quorum response in animal groups

(Sumpter & Pratt, Phil. Trans. R. Soc., 2009)

Observe sudden turn

ct this corner

Tu & Sayed, Proc. Cog. Inform. Process., (2012)

Observe sudden turn at this corner

Animal Behavior Lab (Couzin, Princeton University)

Interactions: State-Dependent

13

2016

Regularization; Sparsity; Priors, ..

14

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

$$w^o \stackrel{\Delta}{=} \arg\min_{w} \frac{R(w)}{I(w)} + J(w)$$
regularization

Examples:

$$R(w) = \begin{cases} \rho \|w\|^2, & (\ell_2 - \text{regularization}) \\ \alpha \|w\|_1, & (\ell_1 - \text{regularization}) \\ \alpha \|w\|_1 + \rho \|w\|^2, & (\text{elastic-net regularization}) \end{cases}$$

Risk and Loss Functions

2016

MSE, SVM, Perceptron, Boosting, ...

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

Examples:

$$Q(\boldsymbol{h}^{\mathsf{T}}\boldsymbol{w},\boldsymbol{\gamma}) = \begin{cases} (\boldsymbol{\gamma} - \boldsymbol{h}^{\mathsf{T}}\boldsymbol{w})^{2}, & (\text{quadratic loss}) \\ \ln\left(1 + e^{-\boldsymbol{\gamma}\boldsymbol{h}^{\mathsf{T}}\boldsymbol{w}}\right), & (\text{logistic regression}) \\ e^{-\boldsymbol{\gamma}\boldsymbol{h}^{\mathsf{T}}\boldsymbol{w}}, & (\text{exponential loss}) \\ \max\{0, 1 - \boldsymbol{\gamma}\boldsymbol{h}^{\mathsf{T}}\boldsymbol{w}\}, & (\text{hinge loss}) \\ \max\{0, -\boldsymbol{\gamma}\boldsymbol{h}^{\mathsf{T}}\boldsymbol{w}\}, & (\text{Perceptron loss}) \end{cases}$$

Classical Gradient-Descent

2016

$$w^{o} \stackrel{\Delta}{=} \arg\min_{w} J(w)$$

$$J(w) = \mathbb{E}Q(\mathbf{h}^{\mathsf{T}}w, \boldsymbol{\gamma})$$

$$w_{n} = w_{n-1} - \mu \nabla_{w}J(w_{n-1})$$

$$\int_{\nabla_{w}J(w_{n-1})} \frac{w_{n}}{(\boldsymbol{v}_{n-1})^{-\mu}}$$

$$J(w)$$

$$W_{n-1}$$

Stochastic Gradient Learning

2016

$$\boldsymbol{w}_{n} = \boldsymbol{w}_{n-1} - \mu \nabla_{\boldsymbol{w}} Q(\boldsymbol{h}_{n}^{\mathsf{T}} \boldsymbol{w}_{n-1}, \boldsymbol{\gamma}(n))$$

$$\mu(n) = 1/n$$

$$\nabla_{\boldsymbol{w}} J(\boldsymbol{w}_{n-1})$$

$$(\boldsymbol{v}_{n-1}) = \frac{\boldsymbol{v}_{n-1}}{\boldsymbol{v}_{n-1}}$$

Performance Measures

19

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

Examples:

$$\lim_{n \to \infty} \sup \mathbb{E} \| w^o - \boldsymbol{w}_n \|^2 \qquad \text{(Mean-square-deviation)}$$

 $\begin{cases} \limsup_{n \to \infty} \mathbb{E} \left(J(\boldsymbol{w}_n) - J(w^o) \right) & (\text{Excess-risk}) \\ \text{Prob(error)} & (\text{Drob}(1)) \end{cases}$

(Probability of error)

2016

Influence of Topology?

21

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

Image from Agents, Interaction, and Complexity Research Group website. University of Southampton.

Some Relevant Questions

Adaptation and Learning by Networked Agents (A. H. Sayed)

- Which topology has best performance?
- What aspects of the topology influence performance?
- Can different topologies deliver same performance?
- Is cooperation always beneficial?
- Can networks match performance of centralized solutions?

Multi-Agent Network

Adaptation and Learning by Networked Agents (A. H. Sayed)

Network with N vertices (agents):

- Edges connecting agents.
- $a_{\ell k}$: scales data from ℓ to k .
- \mathcal{N}_k : neighbors of agent k.

Strongly-connected network:

path with nonzero weights between any two agents plus at least one self-loop $(a_{kk} > 0)$.

Combination Policy

2016

$$a_{\ell k} \ge 0, \quad \sum_{\ell \in \mathcal{N}_k} a_{\ell k} = 1, \quad A^{\mathsf{T}} \mathbb{1} = \mathbb{1}$$
 (left-stochastic)

Perron-Frobenius Theorem

Adaptation and Learning by Networked Agents (A. H. Sayed)

A has a single eigenvalue at one.

All other eigenvalues are strictly inside the unit circle.

Perron vector:

$$Ap = p, \quad \mathbb{1}^{\mathsf{T}}p = 1, \quad p_k > 0, \ k = 1, 2, \dots, N$$

Diffusion Learning

26

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

$$\begin{cases} \boldsymbol{\psi}_{k,n} = \boldsymbol{w}_{k,n-1} - \mu \nabla_{\boldsymbol{w}} Q_k(\boldsymbol{h}_{k,n}^{\mathsf{T}} \boldsymbol{w}_{k,n-1}, \boldsymbol{\gamma}_k(n)) \\ \boldsymbol{w}_{k,n} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \boldsymbol{\psi}_{\ell,n} \end{cases}$$

Sayed et al. (2006-2016): Lopes, Cattivelli, Tu, Zhao, Towfic, Chen, Yu, Vlaski, Ying.

Diffusion Learning: Variations

Adaptation and Learning by Networked Agents (A. H. Sayed)

$$\begin{aligned} \boldsymbol{\psi}_{k,n} &= \boldsymbol{w}_{k,n-1} - \mu \nabla_{\boldsymbol{w}} Q_k(\boldsymbol{h}_{k,n}^{\mathsf{T}} \boldsymbol{w}_{k,n-1}, \boldsymbol{\gamma}_k(n)) \\ \boldsymbol{w}_{k,n} &= \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \boldsymbol{\psi}_{\ell,n} \\ \text{Symmetry ensures stability} \\ \text{regardless of topology!} \end{aligned}$$

Variations exist to deal with non-smooth formulations:

- \rightarrow Sub-gradients
- \rightarrow Proximal operators
- \rightarrow Penalty-based

Consensus Strategy

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

$$\boldsymbol{w}_{k,n} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \boldsymbol{w}_{\ell,n-1} - \frac{\tau}{n} \nabla_{\boldsymbol{w}} Q_k(\boldsymbol{h}_{k,n}^{\mathsf{T}} \boldsymbol{w}_{k,n-1}, \boldsymbol{\gamma}_k(n))$$
Decaying step-size asymmetry

Tsitsiklis and Athans (1984) Boyd and Xiao (2004) Moura et al (2009)

Consensus Strategy

Adaptation and Learning by Networked Agents (A. H. Sayed)

$$\boldsymbol{w}_{k,n} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \boldsymbol{w}_{\ell,n-1} - \frac{\tau}{n} \nabla_w Q_k(\boldsymbol{h}_{k,n}^{\mathsf{T}} \boldsymbol{w}_{k,n-1}, \boldsymbol{\gamma}_k(n))$$

- Solves well optimization problems.

THEOREM A: Stability & Agreement

2016

Two (not one) Rates of Convergence!

Two (not one) Rates of Convergence!

2016

THEOREM B: Scaling Law #1

33

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

Zhao & Sayed (IEEE Trans. Signal Process., 2012) Chen & Sayed (IEEE Trans. Infor. Thy., 2015)

Network of Learners

34

2016

Optimizing the Topology

35

2016

$$A^{o} \stackrel{\Delta}{=} \arg\min_{A} \operatorname{Tr} \left(\sum_{k=1}^{N} p_{k}^{2} H^{-1} R_{k} \right)$$

subject to $Ap = p, \ \mathbb{1}^{\mathsf{T}} p = 1, \ p_{k} > 0$
$$\theta_{k}^{2} \stackrel{\Delta}{=} \operatorname{Tr}(H^{-1} R_{k})$$

(1/SNR measure)
$$a_{\ell k}^{o} = \frac{\theta_{k}^{2}}{\max\left\{n_{k} \theta_{k}^{2}, \ n_{\ell} \theta_{\ell}^{2}\right\}}$$

(Hastings rule)

Application: Detecting Intruders

2016

Zhao & Sayed (IEEE Trans. Signal Process., 2012)

Application: Clustering

2016

Zhao & Sayed (IEEE Trans. Signal Process., 2015)

THEOREM C: Scaling Law #2

Adaptation and Learning by Networked Agents (A. H. Sayed)

- Binary state of nature represented by hypotheses \mathcal{H}_o and \mathcal{H}_1 .
- Using large deviation theory and exact asymptotic analysis, as $n \to \infty$.

(false alarm or mis-detection)

$$\operatorname{Prob}_{k}[\operatorname{error}] = e^{-(1/\mu)[a+o(1)]}$$

2016

38

Inverse Modeling

2016

$\operatorname{Prob}_{k}[\operatorname{error}] = e^{-(1/\mu)[a+o(1)]}$

IMPLICATIONS:

- Error probabilities vanish exponentially with $1/\mu$.
- Same exponent a: parallel curves

• Connectivity matters \rightarrow o(1)

Adaptation and Learning by Networked Agents (A. H. Sayed)

More peripheral agents perform worse.

Fundamental Tradeoff

40

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

	Networked agents	Centralized inference with <i>N</i> iid obs.	Rate-constrained multi-terminal inference (CEO)
MSE (distortion)	$\propto \mu$	$\propto 1/N$	$\propto 1/R$
Error probability	$\propto e^{-1/\mu}$	$\propto e^{-N}$	$\propto e^{-R}$

Reducing μ plays a role similar to increasing (N, R). \rightarrow Interpretation: μ quantifies the cost of information.

What about Weak Graphs?

Adaptation and Learning by Networked Agents (A. H. Sayed)

Weak connectedness can arise as a result of:

- Intruder attacks by malicious agents;
- ✓ Failure by some critical links;
- Presence of stubborn agents;
- Information control;

information flows in one direction

Asymmetric information dissemination over social platforms.

Example

2016

Adaptation and Learning by Networked Agents (A. H. Sayed)

8 agents, S=2 sending sub-networks, and R=1 receiving sub-networks.

Mind-Control, Defiance, Reconciliation

2016

Control Mechanism

44 2016

Concluding Remarks

Adaptation and Learning by Networked Agents (A. H. Sayed)

Interesting phenomena arise when information is processed in a distributed manner over networks:

Is more better?

Why is one topology better than the other?

How to ensure network stability?

How to adapt the topology and weights?

How to handle selfish agents? Intruders? Outliers?

Bio-inspired cognition. Swarming. Evasion procedures.

→ Many challenging open issues