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Multi-agent Systems

A multi-agent system consists of multiple agents that interact to achieve a
cooperative objective.

An agent can represent a moving vehicle, a sensor node, an electric bus, etc.

Cooperative Objectives: Formation, Consensus, Containment, Rendezvous, ...
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Consensus

 

Agent 4 

Agent 3 
Agent 2 

Agent 1 

Consensus Control: 

The agreement value 

Consensus: To reach an agreement upon a common value.
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Agent Dynamics

General Linear Agent Model :

ẋi (t) = Axi (t) + Bui (t), 1 ≤ i ≤ N (1)

• xi (t) ∈ Rn : The state of agent i at time instant t;

• A ∈ Rn×n : System matrix (known and constant);

• B ∈ Rn×m : Input matrix (known and constant);

• ui (t) ∈ Rm×n : A proposed distributed control input;

• N : Number of agents in the network.
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Consensus

Consensus Definition:

For any initial condition xi (0), the consensus problem for (1) is
said to be solved iff :

• Global sense : lim
t→∞
‖ xi (t)− xj(t) ‖ = 0, (1 ≤ i , j ≤ N),

• Average sense : lim
t→∞

‖xi (t)− 1
N

∑N
j=1xj(0) ‖= 0, (1≤ i ≤N),

Average consensus is usually considered for first-order agents
defined by ẋi (t) = ui (t), with xi (0) as initial local observation.

Key components in reaching consensus:

• Distributed control input ui (t),

• Information exchange between the neighbouring agents.
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Event-triggered Consensus
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1 xi (t): The state of agent i

2 x̂i (t): The last transmitted state of agent i up to time t

The received information is subject to uncertainty due to existence
of communication unreliabilities → robustness is required
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Motivation and Objective

Motivation:

• Transmission saving for consensus in multi-agent systems with
bandwidth constrained environments and unreliable channel.

Objective:

• Achieve event-triggered consensus with a desired exponential
rate of convergence (as opposed to asymptotic rate);

• Compute optimal consensus parameters to achieve consensus
in presence of network uncertainties.
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Main Features

• Event-based disagreement vector :

qi (t) =
∑

j∈Ni
āij (e

A(t−t iki )xi (t iki )−e
A(t−t jkj )xj(t

j
kj

))

where āij is the uncertain (but norm-bounded) weight for channel
link between agent i and j .

• Measurement error : ei (t) = e
A(t−t iki )xi (t iki )− xi (t).

• Event-triggering function : given an event time t iki , the next

event for agent i is triggered at t = t iki+1, where

t iki+1 = inf {t > t iki | ‖ei (t)‖−φ‖qi (t)‖ ≥ 0 }, (2)

φ > 0 : Transmission threshold to be designed.
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Design unknown parameters

The proposed control law :

ui (t) = Kiqi (t), (3)

Ki : Control gain to be designed.

Question: How to design optimal1 values for transmission
threshold φ and control gain Ki that guarantee an exponential rate

of consensus in norm-bounded uncertain network channel?

1maximize φ to minimize events, and minimize Ki to minimize control force
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Preliminary steps prior to optimization

• Consider the augmented closed-loop system;

• Convert the consensus problem into an equivalent stability
problem → Lyapunov stability method

• Obtain sufficient conditions and inequalities for uncertain
connectivity links.
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Compute optimal consensus parameters

Solve the following convex optimization problem with desired
convergence rate ζ

min
Θi ,µ,ε,τj ,P,ω1,ω2,ω3,ω4

f =

To maximize φ︷ ︸︸ ︷
ω1+ω2 +

To minimize Ki︷ ︸︸ ︷
ω3 +ω4 (4)

S.t: Π =

[
Π1 Π2

∗ Π3

]
< 0,

[
−ω1 τ1
∗ −1

]
< 0,

[
−ω2 µ
∗ −1

]
< 0,[

ω3I I
∗ P

]
> 0,

[
−ω4I ΘT

∗ −I

]
< 0,

• Θi (1≤i≤N), µ, ε, τj (1≤j ≤3), P, ωc (1≤ c ≤4) are decision variables;

• Block Matrix Π contains information about agent models, network
connectivity, exponential convergence criterion, uncertainty upper bound,
control gain Ki , and transmission threshold φ.
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Compute optimal consensus parameters

Once the optimization problem (4) is solved, compute consensus
parameters

φ =
√
τ1−1µ−1, and Ki = B†i P

−1Θi , (1≤ i ≤N) (5)

Consensus parameters are bounded for the minimized objective
function f = ω1 + ω2 + ω3 + ω4

φ≥ (ω1ω2)
−1
4 , KT

i Ki ≤ω3 ω
2
4B
†
i B
†
i

T
, (1≤ i ≤N). (6)

ICASSP 2018 12 / 16



Problem Statement and Objectives
Problem Formulation

Optimization and Parameter Design
Simulation
Conclusion

Concordia University

Experimental Results

• A network of six second-order heterogeneous agents

ṙi (t) = vi (t),

mi v̇i (t) = ui (t), (1 ≤ i ≤ 6), (7)

ri (t)∈R: Position, vi (t)∈R: Velocity, mi : Inertia

• Consensus in this problem is to, distributively, reach a common position
and velocity

• Laplacian Matrix (two unreliable links)

L =

 2.5 0 0 −0.5 −1 −1
0 2 0 0 −1 −1
0 −1 3 −1 0 −1
0 −1 0 2 0 −1
−1 −1 0 −1 3 0
−1 −1 −0.5 0 0 2.5

←→ L̄ =

 2 0 0 0 −1 −1
0 2 0 0 −1 −1
0 −1 3 −1 0 −1
0 −1 0 2 0 −1
−1 −1 0 −1 3 0
−1 −1 0 0 0 2

 (8)

• Solve the optimization problem (4) to compute Ki and φ
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Experimental Results
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How different values for decay rate ζ affect the consensus process?

Table 1: Consensus performance for varying ζ.

decay
rate ζ

Number of transmissions
per agent Consensus

time (sec)
Objective
function f1 2 3 4 5 6

0.2 262 295 333 318 369 321 10.57 401.19
0.3 133 154 175 180 164 142 4.81 406.84
0.4 68 58 95 194 50 68 3.51 411.27

ing to Lemma 1 given in [23], condition (20) is satisfied if
there exists a scalar ε> 0 such that

Π̃ + ε∆T∆ + ε−1IT I< 0. (21)
The non-zero entries in ∆T∆, i.e., ∆T

M∆M , satisfies ∆T
M∆M ≤

η2
M I. Therefore, the term εη2

M I is placed in corresponding
blocks in (21). Inequality (21) is not linear since the deci-
sion variables are multiplied by each other. To derive a linear
matrix constraint, we expand PA in what follows
PA= (L̂⊗ 1n1

T
n ) ◦ (1N−1 ⊗ [PB1K1 , . . . , PBNKN ])L.

Defining Θi =PBiKi (1≤ i≤N) as alternative variables, in-
equality (20) becomes linear with respect to Θi’s and the Ξ
given in (11) is obtained. The same procedure is used to de-
fine µ= τ−1

1 φ−2. The objective function in this problem would
maximize the STT (to minimize the number of transmissions)
and minimize the norm of control gains (to minimize control
effort). The change of variables used to derive Π makes such
an objective function nonlinear. Motivated by [24], parame-
ters Ki’s and φ are derived with respect to a modified objec-
tive function which minimizes the decision variables involved
in obtaining these parameters. In this regard, the inequalities
P−1 <ωPI, ωP> 0, ΘT

i Θi<ωθiI, ωθi > 0, τ12 <ωτ1 , ωτ1 > 0,
and µ2<ωµ, ωµ> 0 are considered for the minimized sum of
ωP, ωθi , ωτ1 , and ωµ for all (1≤i≤N). The Schur comple-
ment is used to convert above inequalities into LMI struc-
tures. Once the optimization problem (11) is solved, τ1, P,
Θi, and µ are obtained. Consensus variables can be derived
reversely and that completes the proof.

The proposed Exponential Robust ETC algorithm, de-
noted by ER-ETC, is summarized in Algorithm 1.

4. NUMERICAL SIMULATIONS
Consider a network of six second-order heterogeneous agents
with the following dynamics [25]

ṙi(t) = vi(t),
miv̇i(t) =ui(t), (1 ≤ i ≤ 6), (22)

where ri(t)∈R, and vi(t)∈R, respectively, denotes the posi-
tion and velocity for agent i. We consider mi = 1, (1≤ i≤ 6),
as in [25]. The state space representation for (22) with re-
spect to (1) is given by xi(t) = [ ri(t), vi(t) ]T , A= [ 0, 1; 0, 0 ],
Bi = [0, 1]T , (1≤ i≤ 6). The directed network configuration
for to MAS (22) is described by the asymmetric Laplacian
matrix L in (23). We assume that the connection link be-
tween {agent 1 and agent 4}, and {agent 6 and agent 3} are
weak. These two links fail in every odd consensus iterations,
i.e., a14 = 0, a63 = 0. The perturbed Laplacian L̄ is given be-
low.

L=

 2.5 0 0 −0.5 −1 −1
0 2 0 0 −1 −1
0 −1 3 −1 0 −1
0 −1 0 2 0 −1
−1 −1 0 −1 3 0
−1 −1 −0.5 0 0 2.5

←→ L̄=

 2 0 0 0 −1 −1
0 2 0 0 −1 −1
0 −1 3 −1 0 −1
0 −1 0 2 0 −1
−1 −1 0 −1 3 0
−1 −1 0 0 0 2

 (23)

From (3), we obtain ∆L(t) = (L̄ − L)L†. In this experiment
‖∆L(t)‖= ηL = 0.355. Moreover, from Lemma 1 one can ob-
tain ηL̂ = 0.295 and ηM = 0.681. To solve the consensus prob-
lem using Theorem 1, we initialize the LMI optimization with

0 1 2 3 4

0

5

10

P
o

s
it

io
n

 &
 V

e
lo

c
it

y

(a)

xi(t)
vi(t)

0 1 2 3 4

1

2

3

4

5

6

A
g

e
n

ts
 i
n

d
e
x
 n

u
m

b
e
r

(b)

0 1 2 3 4

Time (sec)

0

10

20

30

40

50

E
x
p

o
n

e
n

ti
a
l 
S

ta
b

il
it

y

(c)

2.85e−0.3t‖xr(0)‖
‖xr(t)||

0 1 2 3 4
Time (sec)

0

20

40

60

A
m

p
li
tu

d
e

(d)

Left hand side of (9)

Right hand side of (9)

Fig. 1: Trajectories of the MAS (22)

ζ = 0.3. Using the YALMIP parser and SDPT3 solver [26],
we solve (11) with the aforementioned values. The control
gains are derived from (10) as follows. K1 = −[ 1.63, 0.98 ],
K2 = −[ 1.83, 1.10 ], K3 = −[ 1.99, 1.19 ], K4 = −[ 1.95, 1.17 ],
K5 = −[ 2.36, 1.41 ], and K6 = −[ 1.81, 1.08 ]. The STT is
computed as φ= 0.0223. In order to observe the state trajec-
tories of the MAS (22) with the designed parameters, we pick
initial values for xi(0) = [ i+ 3, i−3 ]T , (1≤ i≤ 6). Computed
with discretization intervals Ts = 0.01sec, the state trajecto-
ries of the six agents are shown in Fig. 1(a). The triggering
moments for each agent is shown in Fig. 1(b). Fig. 1(c) is in-
cluded to verify that the obtained parameters, i.e.,Ki’s and φ,
are capable of ensuring ζ-exponential convergence among the
agents for ζ = 0.3. In Fig. 1(d), we investigate the conser-
vation imposed by Lemmas 1 which is used to convert lo-
cal event-triggering conditions (8) to inequality (9). Accord-
ing to Fig. 1(d), the cumulative measurement errors (the left
hand side of (9)) is closely upper-bounded by the right hand
side of (9). It takes 481 consensus iterations to reach consen-
sus in this experiment with a termination level of 0.01, i.e.,
‖xr(t)‖≤ 0.01‖xr(0)‖. The six agents, respectively, transmit
their states on 133, 154, 175, 180, 164, and 142 occasions
during the process.

Next, we study the effect of ζ on the consensus perfor-
mance. To this end, we vary ζ and solve (11) while the re-
maining values of the system remain the same. The results
are summarized in Table 1. According to Table 1, as ζ is in-
creased, the consensus time constantly gets reduced. Faster
convergence rate is achieved with a higher minimized objec-
tive function f , which implies deriving larger control gains
and/or a smaller STT. Therefore, the consensus process is
accomplished with more control and communication cost.

5. CONCLUSION

This paper addresses the problem of event-triggered consen-
sus (ETC) in linear multi-agent systems (MAS) with uncer-
tain topologies. The closed-loop system is transformed to an
equivalent reduced order system. The Lyapunov stability the-
orem is then used to compute optimal consensus parameters
(control gains and a state transmission threshold (STT)),
which guarantee consensus with an exponential convergence
rate in non-ideal network connectivity. The effectiveness of
the proposed algorithm is studied through numerical simula-
tions for second-order MAS’s.
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Conclusion

1 For a desired rate of convergence, robust event-triggered consensus is
reached for norm-bounded uncertain networks;

2 Using convex optimization, the transmission threshold φ is maximized (to
trigger minimum number of events) and control gain Ki is minimized (to
minimize the control force);

3 As convergence rate ζ is increased, the consensus time constantly gets
reduced until the optimization problem becomes infeasible
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Question?

Thank You
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