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Motivation:
• Energy and communication savings for distributed

sensor networks operating in bandwidth constrained
environments.
• Applying event-triggered framework to average con-

sensus in multi-agent networks.

Objective:
• Formulate the problem as a guaranteed cost opti-

mization and compute the design parameters for the
event-triggered average consensus framework.

PROBLEM STATEMENT
Consensus framework: ẋi(t) = ui(t)︸ ︷︷ ︸

input

, 1≤i≤N

Average consensus is achieved if and only if

limt→∞

∣∣∣xi(t)− 1/N
∑N
j=1 xj(0)

∣∣∣= 0, (1≤i, j≤N).

Let x̂i(t) = x(tik), where tik is the time instant for the
most recent event for agent i.

Event-based Control Input:

ui(t) = −k
∑
j∈Ni

( x̂i(t)− x̂j(t) ), (1 ≤ i ≤ N), (1)

• k: scalar control gain to be computed.

Event-triggering function: Given tik, the next event for
agent i is triggered at t= tik+1 where tik+1 satisfies

tik+1 = inf { t > tik : |ei(t)|−φi|X̂i(t)| ≥ 0}, (2)

• ei(t) = xi(t)− x̂i(t)
• X̂i(t) =

∑
j∈Ni( x̂i(t)− x̂j(t) ),

• φi: transmission threshold to be computed for agent i
How to compute k and φi?
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PARAMETER OPTIMIZATION
• Consider the cost function

J=

∫ ∞
0

xT (t)Rx(t) + uT (t)Qu(t)dt (3)

• R: desired weight to the state x(t) to control the con-
sensus convergence rate;

• Q: desired weight to the difference vector e(t) to
control the number of transmission events.

Design k and φi in such a way that the associated
cost J with the event-triggered average consensus sat-
isfies J ≤ J∗, where J∗ is said to be the guaranteed cost

min
µ,τ,p,γi,ωτ ,ωµ,ωp,ωγi

f = ωτ+ωk +ωp + p+ Tr(ωΓ) (4)

Π ,

[
−µL−µLT+R −µL MT

∗ −τI+Q MT

∗ ∗ −Γ

]
< 0,

[
ωp 1
∗ p

]
> 0,[

−ωΓ Γ
∗ −I

]
< 0,

[
−ωτ τ
∗ −1

]
< 0,

[
−ωµ µ
∗ −1

]
< 0,

• µ, τ, p, γi, ωτ , ωµ, ωp, ωγi are optimization decision
variables;

• R and Q are given matrix weights;

•M , and L contain network connectivity information;

• Compute k and φi as follows

k = p−1µ, and φi =
√
τ−1γi−1, (1≤ i≤N), (5)

• Using (5), it holds that J ≤ {J∗ = xT (0)LT pLx(0)}

THE CONSENSUS ALGORITHM

number of transmissions. Once the φi’s are obtained, the dis-
tributed event-triggering mechanism (8) determines the trig-
gering instants for each agent. According to Lemmas 1 and 2,
inequality (12) is guaranteed.

3.2. Parameter Design

The following theorem computes the optimal control gain k
and event-triggering threshold φi form the cost function J
and objective function f used in the optimization problem.

Theorem 1. Given R and Q for the cost function J , the
optimal event-triggering threshold φi’s and control gain k are
computed from

k = P
−1µ, and φi =

√
τ−1γi−1 (1≤ i≤N), (13)

which are conditioned on the existence of positive scalars P, τ ,
µ, ωτ , ωk, ωP, γi, and ωγi (1≤ i≤N), satisfying the following
minimization problem with constraints expressed in terms of
linear matrix definiteness inequalities

min
µ,τ,P,γi,ωτ ,ωµ,ωP,ωγi

f =ωτ+ωk +ωP +P+ Tr(ωΓ) (14)

such that Π ,

[
−µL−µLT+R −µL MT

∗ −τI+Q MT

∗ ∗ −Γ

]
< 0,

[
ωP 1
∗ P

]
> 0,[

−ωΓ Γ
∗ −I

]
< 0,

[
−ωτ τ
∗ −1

]
< 0, and

[
−ωµ µ
∗ −1

]
< 0,

where Γ = diag ( γ1 , . . . , γN), and ωΓ = diag (ωγ1 , . . . , ωγN ).
The associated cost J for the average consensus process using
the obtained φi’s and k from (13), collectively, guarantees
J ≤ J∗, where J∗=xr(0)TPxr(0). The consensus process is
accomplished by minimizing the objective function given
in (14) for which the following inequalities are guaranteed

k2≤ωµω2
P, φi≥ (ωτωγi)

−1
4 , (1≤ i≤N). (15)

Proof. Consider V (t) =xT
r (t)Pxr(t) as the Lyapunov candi-

date for system (7). According to the Lyapunov stability the-
orem, system (7) remains stable if V̇ (t)< 0. However, in order
to incorporate the cost function J with the stability condi-
tion, we consider the following inequality

V̇ (t) + xTr (t)Rxr(t) + eTr (t)Qer(t)< 0. (16)
If (16) is satisfied, then the time derivative of V (t) is nega-
tive, i.e., V̇ (t)< 0. Therefore, (7) is stable which implies that
limxr(t) = 0 as t→∞. On the other hand, integrating (16)
results in V (∞)−V (0) +

∫∞
0 (xT

r (t)Rxr(t) + eTr (t)Qer(t) ) dt
< 0, which is equivalent to J < [V (0) =xT

r (0)Pxr(0)]. Denot-
ing J∗=xT

r (0)Pxr(0), the cost of the event-triggered average
consensus process for a given network and certain initial val-
ues is guaranteed not to exceed J∗, i.e., J <J∗. Now accord-
ing to the reduced order system (7), we expand (16). Denoting
Ω = [xT

r (t), eT
r ]T , one obtains ΩT Π1 Ω < 0 from (16), where

Π1 is defined as follows

Π1 =
[
−kPL−kPLT+R −kPL

∗ Q

]
. (17)

The event-triggered constraint (12) is equivalent to ΩTΠ2 Ω<0,

Π2 =
[
−MTΦ2M −MTΦ2M

∗ I−MTΦ2M

]
. (18)

According to the S-procedure lemma [24], if there exists
a positive scalar τ such that Π = Π1−τΠ2 < 0, then both

Algorithm 1. The GP-ETAC Algorithm
Input: Adjacency Weighting Matrix A= {aij}, Initial con-

ditions xi(0), and Weighting Matrices {R,Q}.
Output: Event-triggered Average Consensus with Guaran-

teed Performance
Preliminaries: (P1 – P2)
P1. Remove the N th row of L to determine L̂ and L= L̂LL̂†.
P2. Given L̂, determine α and matrix M from Lemma 2.
Optimization and Parameter Design Steps: (D1–D2)
D1. Using a convex optimization solver, solve the minimiza-

tion problem (14) for given parameters {R,Q}.
D2. Using (13), compute transmission threshold φi

(1≤ i≤N) and control gain k.
Consensus Steps: (C1 – C4)
C1. Each sensor sends its initial value xi(0) to its neighbours.
C2. In each consensus iteration, the state of node i is excited

by control law (3) with k computed from D2.
C3. In each consensus iteration, the event-triggering condi-

tion (8) is locally monitored with the designed φi to de-
termine when to transmit xi(t) to the neighbours.

C4. Steps C2 and C3 continue until average consensus
(i.e., ui(t)→ 0 in (3)) is achieved among agents.

ΩT Π1 Ω< 0 and ΩT Π2 Ω< 0 are guaranteed. Therefore, we
incorporate the two inequalities by obtaining Π. Applying
Schur complement [24] for Π leads to the following inequality[

−kPL−kPLT+R −kPL τMTΦ
∗ −τI+Q τMTΦ
∗ ∗ −τI

]
< 0. (19)

We pre- and post-multiply (19) withH= diag(I, I, τ−1Φ−1).
The resulting inequality is not linear due to the product of
decision variables. To derive a linear matrix constraint, we
define alternative variables Γ = τ−1Φ−2 and µ= kP. The ob-
jective function for constraint Π would maximize the event-
triggering thresholds (to minimize the number of transmis-
sions) and minimize the control gain (to minimize the con-
trol effort). The change of variables used to derive Π preserves
the original problem but makes the objective function nonlin-
ear. Motivated by [25], an objective function which minimizes
the decision variables involved in obtaining k and φi’s is de-
veloped. In this regard, we consider inequalities P−1 < ωP,
ωP> 0, µ2 < ωµ, ωµ> 0, τ2 < ωτ , ωτ > 0, γ2

i < ωγi , ωγi > 0,
(1≤i≤N), for the minimized sum of ωP, ωγi , ωτ , and ωµ. The
Schur complement converts the above inequalities into LMIs.
To minimize the guaranteed cost J∗, scalar P is considered in
the convex objective function f . Once (14) is solved, consen-
sus parameters are computed from (13).

In an event-triggering scheme there must exist a pos-
itive lower bound for any two consecutive triggering mo-
ments. Otherwise, the triggering function exhibits Zeno
behaviour [26]. It can be proved that the inter-event inter-
val for agent i is strictly positive and lower bounded by
φik
−1, i.e., tiki+1−tiki≥φik

−1, (1≤i≤N), which rules out the
Zeno behaviour. The guaranteed performance event-triggered
average consensus (GP-ETAC) approach is outlined in Algo-
rithm 1. There may be scenarios where Algorithm 1 does not
optimize to a solution. In such cases, R and Q are modified
to have reduced norm values and Algorithm 1 is repeated.
Although Algorithm 1 assumes a globally known topology,
its extension to uncertain topologies is presented in [27].

MONTE-CARLO SIMULATIONS
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One randomly selected simulation (Figs. (a) and (b)):

• Non-zero elements in the symmetric adjacency ma-
trix A of a random network with N = 10:
{a14, a16, a17, a19, a1,10, a24, a26, a29, a2,10, a37, a39,
a45, a48, a5,10,a67, a68, a6,10, a78, a7,10, a9,10}.

• Initial optimization problem (4) with R = rI and
Q = qI with r = 1 and q = 1

• Optimized parameters: k=3.939, φ1=0.055,
φ2=0.065, φ3=0.034, φ4=0.035, φ5=0.050, φ6=0.046,
φ7=0.041, φ8=0.032, φ9=0.056, φ10=0.020.

• 462 iterations (CI) to reach average consensus.
• Number of events for each agent: 29, 26, 47, 44, 33, 34,

37, 47, 27, and 71→Average transmission (AT) value
of 39.50 times per agent.

• Computed value of the guaranteed cost J∗ is 824.76.
• Cost of consensus process is J = 151.67→ J ≤ J∗

Effect of r and q on random networks (Figs. (c)
and (d)):

• Investigate the effect of different choices of {r, q}
(R=rI and Q=qI) on the average consensus.

• With a fixed q, increasing r accelerates the conver-
gence rate (smaller CI) at the expense of higher AT
and increased cost J (Table 1).

• Decreasing q for a fixed r leads to a smaller AT (larger
gaps between triggering moments are allowed)
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Fig. 1: a) Average consensus on xi(t). (b) Control input ui(t).
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ĀT=38.30
J=155.12

¯

r

Ā
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Fig. 2: The effect of r and q on: (a) CI, and: (b) AT (N = 10).

4. NUMERICAL SIMULATIONS

The performance of the GP-ETAC algorithm is assessed by
running Monte-Carlo simulations on random sensor networks
with various choices of N , R, and Q. The second eigenvalue
of L in each randomly generated network follows a normal
distribution with a mean of 2 and variance of 0.2. Only con-
nected networks are selected. All non-zero adjacency weights
aij are set to 1. To show detailed results for Algorithm 1, one
randomly selected Monte-Carlo realization is chosen as an
example. The non-zero elements in the adjacency matrix A of
this network are {a14, a16, a17, a19, a1,10, a24, a26, a29, a2,10,
a37, a39, a45, a48, a5,10,a67, a68, a6,10, a78, a7,10, a9,10}. To ini-
tialize the convex optimization (14), we set R= rI and Q= qI
with r= 1 and q= 1. Using the YALMIP parser and SDPT3
solver [28], we solve (14). The resulting consensus parame-
ters are k= 3.939, φ1=0.055, φ2=0.065, φ3=0.034, φ4=0.035,
φ5=0.050, φ6=0.046, φ7=0.041, φ8=0.032, φ9=0.056, and
φ10=0.020. The computed value of the guaranteed cost J∗
is 824.76. For a sampling time Ts = 0.001 sec, the evolutions
of the states xi(t) and control inputs (3) for the ten nodes
are shown in Fig. 1. With a termination value of 0.005, i.e.,
‖xr(t)‖≤ 0.005‖xr(0)‖, it takes 462 consensus iterations (CI)
to reach average consensus in this experiment. The ten nodes,
respectively, make 29, 26, 47, 44, 33, 34, 37, 47, 27, and 71
transmissions, leading to an average transmission (AT) value
of 39.50 times per agent. The cost of consensus process
is J = 151.67, which certifies that J <J∗.
Scenario 1: investigates the effect of different choices of
{r, q} (R=rI and Q=qI) on the average consensus perfor-
mance in the aforementioned network. Based on the results
summarized in Table 1, with a fixed q, increasing r acceler-
ates the convergence rate (smaller CI) at the expense of higher
average transmission AT and increased cost J . We note that
increasing R in J implies assigning a higher penalty to the de-
viation of the states from their mean value. Therefore, the op-
timization framework attempts to accelerate the convergence
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Fig. 3: The effect of r and N on: (a) CI, and: (b) J .

Table 1: Impact of weighting matrices r and q on GP-ETAC.
r q k mean(φi) CI AT J J∗

4 1 5.0731 0.0404 333 43.90 450.15 794.71
8 1 6.0091 0.0370 282 47.50 756.35 858.43
1 20 3.8875 0.0373 434 45.70 272.53 795.11
1 0.1 3.9256 0.0441 428 38.80 144.01 849.31

rate. On the other hand, decreasing q for a fixed r leads to a
smaller AT among agents. It is consistent with the definition
of J since decreasing Q assigns a lower penalty on error er(t)
allowing for larger gaps between triggering moments.
Scenario 2: studies the performance of GP-ETAC over ran-
dom networks with N = 10 for various selections of r and q.
Let S= {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30}.
For each pair (r, q)∈ S×S, we solve (14) for twenty random
connected networks of size 10. The corresponding values for
the total number of consensus iterations CI and average local
transmissions AT are shown in Fig 2. In addition to the
observations made under Scenario 1, we note that: (i) Pa-
rameter r is more relevant in controlling the convergence
rate (CI) than q, whereas parameter q is more influential
in controlling the average transmission AT; (ii) The fastest
(slowest) convergence rate is roughly equivalent to the largest
(smallest) amount of average transmission AT and happens
when both r and q are large (small), and; (iii) The effect of
a change in q on CI and AT is stronger when r is small.
Scenario 3: studies the scalability of GP-ETAC for ran-
dom networks of different size. Let N = {15, 20, 30, 40} and
W= {1, 5, 10, 15}. We fix q= 1, and select (r,N)∈W×N. For
each triplet (q, r,N) chosen from the above sets, we solve (14)
for a set of 100 randomly generated networks. From the re-
sulting values of CI and J included in Fig 3, we conclude that:
(i) Higher values of r starting from r= 1 have a greater impact
on the convergence rate in larger networks, and; (ii) The op-
eration cost J increases as N is increased. These observations
corroborates that GP-ETAC provides a structured framework
to control the consensus convergence rate and amount of data
transmissions with a guaranteed cost of operation.

5. SUMMARY AND FUTURE WORK
This paper proposes a guaranteed performance, event-
triggered average consensus (GP-ETAC) approach for dis-
tributed multi-agent networks. The event-triggered consensus
problem is converted to an equivalent stability problem. The
Lyapunov stability theorem is used to develop a novel cost
function to compute the consensus design parameters. The
optimal gains guaranteeing the minimum cost for the process
is obtained through convex optimization. Future work will
extend the results to time-varying networks.

CONCLUSION

• Linear matrix inequality (LMI) optimization computes optimal consensus parameters, i.e., a control gain and
transmision thresholds, guaranteeing the minimum cost for the event-triggered average consensus process.

• To guarantee average consensus, the control gain and transmission thresholds are coupled to benefit from a unified
multi-objective optimization.

• Based on desired weighting matrices R and Q, an optimized trade-off between consensus convergence rate and
the number of transmissions is developed for event-triggered average consensus in distributed sensor networks.


