



# MOTIVATION



# **Motivation**:

- Energy and communication savings for distributed sensor networks operating in bandwidth constrained environments.
- Applying event-triggered framework to average consensus in multi-agent networks.

# **Objective**:

• Formulate the problem as a guaranteed cost optimization and compute the design parameters for the event-triggered average consensus framework.

# **PROBLEM STATEMENT**

**Consensus framework:**  $\dot{x}_i(t) = u_i(t), \quad 1 \le i \le N$ 

|                     |                | input            |              |    |             |             |    |
|---------------------|----------------|------------------|--------------|----|-------------|-------------|----|
| Average             | consensus      | is               | achieved     | if | and         | only        | if |
| $\lim_{t\to\infty}$ | $x_i(t) - 1/N$ | $\sum_{j=1}^{N}$ | $ x_j(0)  =$ | 0, | $(1 \leq i$ | $,j \leq N$ | ). |

Let  $\hat{x}_i(t) = x(t_k^i)$ , where  $t_k^i$  is the time instant for the most recent event for agent *i*.

**Event-based Control Input:** 

$$u_i(t) = -k \sum_{j \in \mathcal{N}_i} (\hat{x}_i(t) - \hat{x}_j(t)), \quad (1 \le i \le N), \quad (1)$$

• *k*: scalar control gain to be computed.

**Event-triggering function:** Given  $t_k^i$ , the next event for agent *i* is triggered at  $t = t_{k+1}^i$  where  $t_{k+1}^i$  satisfies

$$t_{k+1}^{i} = \inf \{ t > t_{k}^{i} : |e_{i}(t)| - \phi_{i} |\hat{\mathbb{X}}_{i}(t)| \ge 0 \}, \qquad (2)$$

• 
$$e_i(t) = x_i(t) - \hat{x}_i(t)$$

• 
$$\hat{\mathbb{X}}_i(t) = \sum_{j \in \mathcal{N}_i} (\hat{x}_i(t) - \hat{x}_j(t)),$$

•  $\phi_i$ : transmission threshold to be computed for agent *i* How to compute k and  $\phi_i$ ?

IEEE International Conference on Acoustics, Speech, and Signal Processing, Calgary, Canada, 2018.

# An Event-triggered Average Consensus Algorithm with Performance Guarantees for Distributed Sensor Networks

Amir Amini, Amir Asif, and Arash Mohammadi Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada

PARAMETER OPTIMIZATION

• Consider the cost function

$$J = \int_0^\infty \boldsymbol{x}^T(t) R \boldsymbol{x}(t) + \boldsymbol{u}^T(t) Q \boldsymbol{u}(t) dt$$
(3)

- *R*: desired weight to the state x(t) to control the consensus convergence rate;
- Q: desired weight to the difference vector e(t) to control the number of transmission events.

Design k and  $\phi_i$  in such a way that the associated cost *J* with the event-triggered average consensus satisfies  $J \leq J^*$ , where  $J^*$  is said to be the guaranteed cost

$$\min_{\omega,\tau,p,\gamma_i,\omega_\tau,\omega_\mu,\omega_p,\omega_{\gamma_i}} f = \omega_\tau + \omega_k + \omega_p + p + \operatorname{Tr}(\boldsymbol{\omega}_{\Gamma}) \quad (4)$$

| $\Pi \triangleq$ | $-\mu \mathbb{L}$ -                | $-\mu \mathbb{L}^T + R$ * *                      | $egin{array}{c} -\mu \mathbb{L} \ -	au I + Q \ * \end{array}$ | $ \begin{array}{c} M^T \\ M^T \\ -\Gamma \end{array} $ | < 0, | $\omega_p \ *$                                     | $\left. \begin{array}{c} 1 \\ p \end{array} \right  > 0,$ |
|------------------|------------------------------------|--------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|------|----------------------------------------------------|-----------------------------------------------------------|
| [-               | $-oldsymbol{\omega}_{\Gamma} \ st$ | $\begin{bmatrix} \Gamma \\ -I \end{bmatrix} < 0$ | $, \begin{bmatrix} -\omega_{	au} \\ * \end{bmatrix}$          | $\begin{bmatrix} \tau \\ -1 \end{bmatrix}$             | < 0, | $\begin{bmatrix} -\omega_{\mu} \\ * \end{bmatrix}$ | $\begin{bmatrix} \mu \\ -1 \end{bmatrix} < 0,$            |

- $\mu, \tau, p, \gamma_i, \omega_{\tau}, \omega_{\mu}, \omega_{p}, \omega_{\gamma_i}$  are optimization decision variables;
- *R* and *Q* are given matrix weights;
- M, and  $\mathbb{L}$  contain network connectivity information;
- Compute k and  $\phi_i$  as follows

$$k = p^{-1}\mu$$
, and  $\phi_i = \sqrt{\tau^{-1}\gamma_i^{-1}}$ ,  $(1 \le i \le N)$ , (5)

• Using (5), it holds that  $J \leq \{J^* = x^T(0)L^T p L x(0)\}$ 

# **THE CONSENSUS ALGORITHM**

## Algorithm 1. The GP-ETAC Algorithm

**Input:** Adjacency Weighting Matrix  $\mathcal{A} = \{a_{ij}\}$ , Initial conditions  $x_i(0)$ , and Weighting Matrices  $\{R, Q\}$ .

**Output:** Event-triggered Average Consensus with Guaranteed Performance

Preliminaries: (P1 - P2)

P1. Remove the  $N^{\text{th}}$  row of L to determine  $\hat{L}$  and  $\mathbb{L} = \hat{L}L\hat{L}^{\dagger}$ . P2. Given  $\hat{L}$ , determine  $\boldsymbol{\alpha}$  and matrix M from Lemma 2.

Optimization and Parameter Design Steps: (D1–D2) D1. Using a convex optimization solver, solve the minimiza-

tion problem (14) for given parameters  $\{R, Q\}$ .

- D2. Using (13), compute transmission threshold  $\phi_i$  $(1 \le i \le N)$  and control gain k.
- Consensus Steps: (C1 C4)

C1. Each sensor sends its initial value  $x_i(0)$  to its neighbours.

- C2. In each consensus iteration, the state of node i is excited by control law (3) with k computed from D2.
- C3. In each consensus iteration, the event-triggering condition (8) is locally monitored with the designed  $\phi_i$  to determine when to transmit  $x_i(t)$  to the neighbours.
- C4. Steps C2 and C3 continue until average consensus (i.e.,  $u_i(t) \to 0$  in (3)) is achieved among agents.

![](_page_0_Picture_54.jpeg)

# **One randomly selected simulation (Figs. (a) and (b)):**

# CONCLUSION

**MONTE-CARLO SIMULATIONS** 

• Non-zero elements in the symmetric adjacency matrix *A* of a random network with N = 10:

 $\{a_{14}, a_{16}, a_{17}, a_{19}, a_{1,10}, a_{24}, a_{26}, a_{29}, a_{2,10}, a_{37}, a_{39}, a_{39},$  $a_{45}, a_{48}, a_{5,10}, a_{67}, a_{68}, a_{6,10}, a_{78}, a_{7,10}, a_{9,10} \}.$ 

• Initial optimization problem (4) with R = rI and Q = qI with r = 1 and q = 1

• Optimized parameters:  $k=3.939, \phi_1=0.055,$  $\phi_2 = 0.065, \phi_3 = 0.034, \phi_4 = 0.035, \phi_5 = 0.050, \phi_6 = 0.046,$  $\phi_7 = 0.041, \phi_8 = 0.032, \phi_9 = 0.056, \phi_{10} = 0.020.$ 

• 462 iterations ( $\overline{CI}$ ) to reach average consensus.

• Number of events for each agent: 29, 26, 47, 44, 33, 34, 37, 47, 27, and 71  $\rightarrow$  Average transmission (AT) value of 39.50 times per agent.

• Computed value of the guaranteed cost  $J^*$  is 824.76. • Cost of consensus process is  $J = 151.67 \rightarrow J \leq J^*$ 

# i(t)

![](_page_0_Figure_79.jpeg)

# Effect of r and q on random networks (Figs. (c) and (d)):

| r | q   | k      | $\operatorname{mean}(\phi_i)$ | $\overline{\mathrm{CI}}$ | $\overline{\mathrm{AT}}$ | J      | $J^*$  |
|---|-----|--------|-------------------------------|--------------------------|--------------------------|--------|--------|
| 4 | 1   | 5.0731 | 0.0404                        | 333                      | 43.90                    | 450.15 | 794.71 |
| 8 | 1   | 6.0091 | 0.0370                        | 282                      | 47.50                    | 756.35 | 858.43 |
| 1 | 20  | 3.8875 | 0.0373                        | 434                      | 45.70                    | 272.53 | 795.11 |
| 1 | 0.1 | 3.9256 | 0.0441                        | 428                      | 38.80                    | 144.01 | 849.31 |

• Linear matrix inequality (LMI) optimization computes optimal consensus parameters, i.e., a control gain and transmision thresholds, guaranteeing the *minimum cost* for the event-triggered average consensus process.

• To guarantee average consensus, the control gain and transmission thresholds are *coupled* to benefit from a *unified multi-objective optimization.* 

• Based on desired weighting matrices R and Q, an *optimized trade-off* between consensus convergence rate and the number of transmissions is developed for event-triggered average consensus in distributed sensor networks.

# Concordia University **Engineering and Computer Science**

• Investigate the effect of different choices of  $\{r, q\}$ (R=rI and Q=qI) on the average consensus.

• With a fixed q, increasing r accelerates the convergence rate (smaller  $\overline{CI}$ ) at the expense of higher  $\overline{AT}$ and increased cost J (Table 1).

• Decreasing *q* for a fixed *r* leads to a smaller AT (larger gaps between triggering moments are allowed)

**Table 1**: Impact of weighting matrices r and q on GP-ETAC.