Event-based Consensus for a Class of Heterogeneous Multi-agent Systems: An LMI Approach

Amir Amini, Arash Mohammadi, and Amir Asif Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada

MOTIVATION

Motivation:

- Saving in communication for heterogeneous consensus of multi-agent networks operating in bandwidth constrained environments.
- Applying event-triggered framework to multi-agent networks.

Objectives:

• Formulate the problem as a Linear Matrix Inequality (LMI) optimization framework to compute the design parameters for the event-trigger mechanism

PROBLEM STATEMENT

State-space model:

$$\dot{\boldsymbol{x}}_{i}(t) = A \underbrace{\boldsymbol{x}_{i}(t)}_{\text{state}} + B_{i} \underbrace{\boldsymbol{u}_{i}(t)}_{\text{input}} + D_{i} \underbrace{\boldsymbol{\omega}_{i}(t)}_{\text{noise}}, \quad 1 \leq i \leq N$$

achieved Consensus is only and $\lim_{t\to\infty} \|\boldsymbol{x}_i(t) - \boldsymbol{x}_j(t)\| = 0, \quad (1 \le i, j \le N).$

Event-based Control Input:

$$\boldsymbol{u}_i(t) = K_i \sum_{j \in \mathcal{N}_i} \left(\hat{\boldsymbol{x}}_i(t) - \hat{\boldsymbol{x}}_j(t) \right),$$

 $\hat{x}_i(t)$: The most recently broadcasted state of agent *i*; K_i : Heterogeneous control gains to be computed.

Event-triggering function:

Transmit new state if $\boldsymbol{e}_i(t) = \hat{\boldsymbol{x}}_i(t) - \boldsymbol{x}_i(t)$ exceeds the threshold $\phi \| \hat{\mathbb{X}}_i(t) \|$ where,

$$\|\hat{\mathbb{X}}_i(t)\|$$
: $\mathcal{N}_i\hat{\boldsymbol{x}}_i(t) - \sum_{j=1}^{\mathcal{N}_i}\hat{\boldsymbol{x}}_j(t)$

 ϕ : Transmission threshold to be computed

IEEE International Conference on Acoustics, Speech, and Signal Processing, New Orleans, USA, 2017.

PARAMETER OPTIMIZATION

• Compute optimized unknown parameters (control gains and transmission threshold) from LMIs optimization.

$$\begin{split} \min_{\Theta_i,\gamma,\tau,P} & \gamma \\ \text{s.t.} \\ \begin{bmatrix} \pi_{11} \ \Xi \mathscr{L} & P \hat{L}_{\langle n \rangle} D & \tau M_{\langle n \rangle}^T \\ * & -\tau I & 0 & \tau M_{\langle n \rangle}^T \\ * & * & -\rho^2 I & 0 \\ * & * & * & -\gamma \end{bmatrix} < 0. \\ P > 0, \quad \tau > 0, \quad \gamma > 0, \end{split}$$

where

- γ , τ , P, and Θ_i ($1 \le i \le N$) are optimization variables;
- R, ρ are given parameters for H_{∞} noise reduction;
- $\hat{L}_{(n)}$, $M_{(n)}$, and \mathscr{L} contain connectivity information;

•
$$\pi_{11} = A_{\langle N-1 \rangle}^T P + P A_{\langle N-1 \rangle} + R + \Xi \mathscr{L} + \mathscr{L}^T \Xi^T$$

$$ullet \Xi = \left(\hat{L} \otimes \mathbf{1}_n \mathbf{1}_n^T
ight) \circ \left(\mathbf{1}_{N-1} \otimes [\Theta_1, \dots, \Theta_N]
ight)$$

• Transmission threshold and control gains are computed from:

$$\phi = \sqrt{\tau \gamma^{-1}} \quad K_i = B_i^{\dagger} P^{-1} \Theta_i$$

THE CONSENSUS ALGORITHM

The Proposed Event-based Consensus Algorithm

Input: $\mathcal{A} = \{a_{ij}\}$, Agents' dynamics given in (1). **Output:** Asymptotic Event-triggered State Consensus

Parameter Estimation: (E1 - E5)

I. Initialization

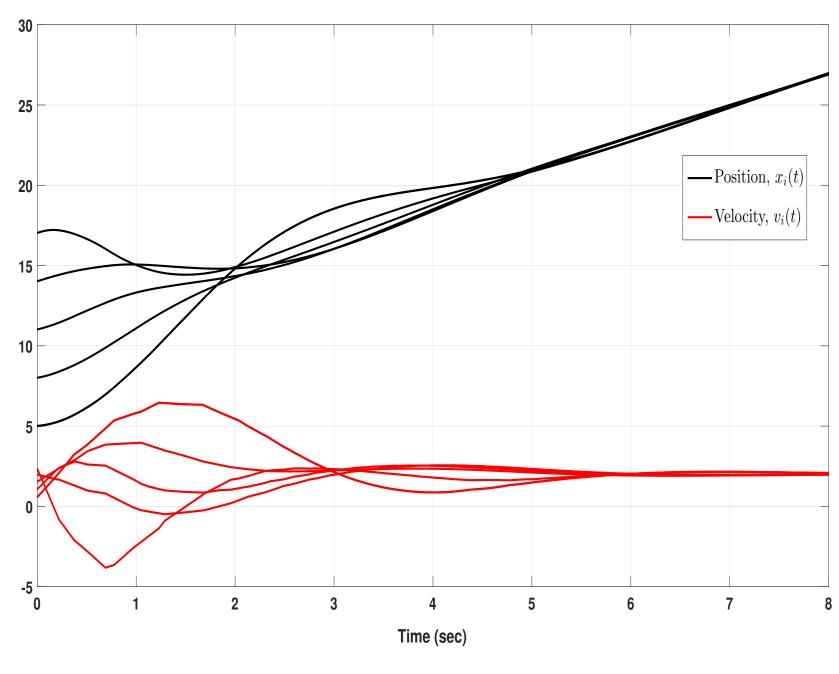
- E1. Transformation Matrix: Remove N^{th} row of L in order to determine the reduced Laplacian matrix, \hat{L} .
- E2. System Transformation: Determine reduced system (5).
- E3. Triggering Matrix: Using Lemma 3, determine $M_{\langle n \rangle}$.
- II. Design
- E4. Solving the LMI's: Using convex optimization solvers, solve the LMIs (11) for a given \mathcal{H}_{∞} parameters, $\{R, \rho\}$.
- E5. Feasibility Verification: If a solution exists for (11), obtain ϕ , and K_i 's from (12). Otherwise, change parameters $\{R, \rho\}$, and repeat step E4.

Event-triggered Consensus: (C1 – C3)

- C1. *Initialization*: Initialize by allowing all agents to transmit their initial states $x_i(0)$ to their neighbours.
- C2. *Execution*: Using K_i 's derived in Step E4, the states of agent i in (1) is excited by (2). Condition (6) is responsible to determine the next state transmission to neighbours for agent i as the states evolves to reach consensus.
- C3. Consensus Achievement: Agent i repeats Step C2 until convergence is achieved for the disagreement state vector, i.e., $\|\widehat{\mathbb{X}}_i(t)\| < \delta_i$ where δ_i is the stopping criterion.

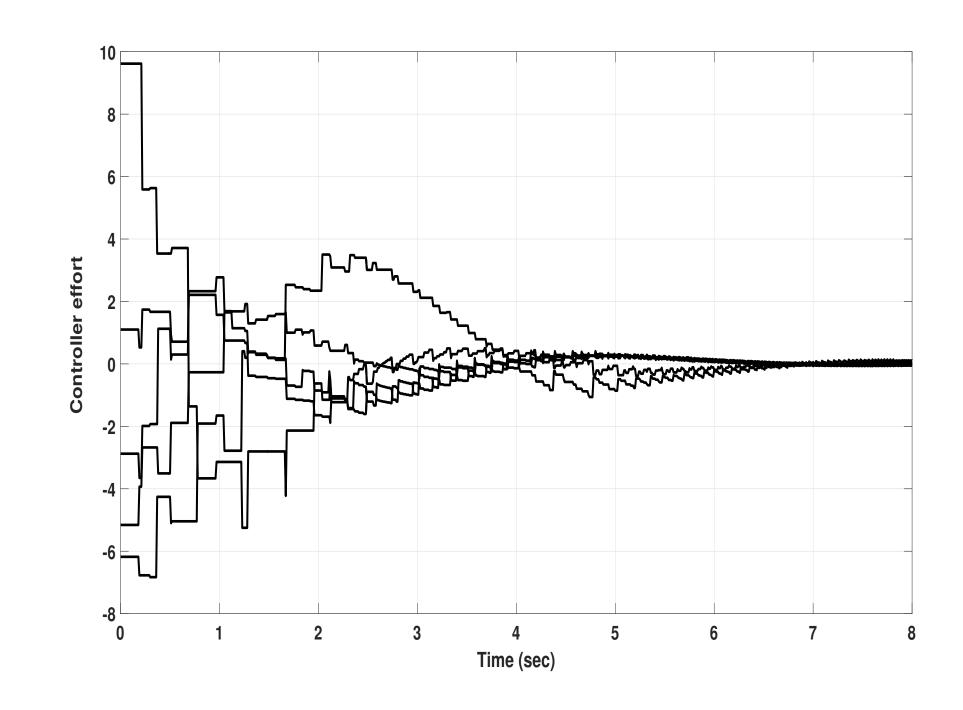
• Five second-order mobile agents:

 $v_i(t)$: velocity, $r_i(t)$: position, $\omega_i(t)$: external disturbance, m_i : inertia,


• With asymmetric connectivity Laplacian matrix:

Summary:

CONSENSUS IN HETEROGENEOUS SECOND-ORDER MAS



Illustrative Example

$$\dot{r}_i(t) = v_i(t)$$

$$n_i \dot{v}_i(t) = u_i(t) + \omega_i(t), \quad 1 \le i \le 5$$

	(2)	-1	0	-1	0
L =	0	2	-1	0	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$
	0	-1	3	-1	$ -1 \\ -1 -1 $
	0	-1	3	-1	-1 ·
	0	-1	0	2	-1
	$\sqrt{-1}$	0	0	-1	2

Objective: All mobile agents reach the same position

- $K_1 = [0.50,$ $K_4 = [0.43,$

• Comparison:

Approach	# tra	ansmis	Consensus			
прриаси	1	2	3	4	5	time (sec)
Proposed	39	128	119	67	123	7.32
Zhang et al.	74	106	140	88	104	8.95

• Faster consensus with a fewer number of data transmission

CONCLUSION

• *Linear matrix inequality (LMI)* optimization guarantees system stability for desired *design objectives* through convex optimization

• To guarantee consensus, control gains and event-triggering condition are *coupled* to benefit from *multi-objective* optimization.

• Additional degree of freedom is provided by *designing heterogeneous control gains* for event-triggered multiagent networks.

Concordia University **Engineering and Computer Science**

Figure 2: Controller effort $u_i(t)$.

• Initialization with $R=0.04I_8$, and $\rho=0.03$.

• Optimized control gains and transmission threshold

), 0.38],	$K_2 = [0.41, 0.47],$	$K_3 = [0.49, 0.63],$
5,0.46],	$K_5 = [0.74, 0.87],$	$\phi = 0.212.$

Table 1: Performance comparison for the two approaches.