

A Guaranteed Cost LMI-Based Approach for Event-Triggered Average Consensus in Multi-Agent Networks

Amir Amini [†], Arash Mohammadi [‡], Amir Asif [†]

[†] Electrical and Computer Engineering, Concordia University, Montreal, Canada. [‡]Concordia Institute for Information System Engineering, Concordia University, Canada.

5th IEEE Global Conference on Signal and Information Processing.

Problem Statement and Objectives

Problem Formulation

Optimization and Parameter Design

Monte-Carlo Simulation

Conclusion and Future work

V

Event-triggered Average Consensus

1 $x_i(t)$: The state of agent *i*

t

2 $\hat{x}_i(t)$: The last transmitted state of agent *i* up to time *t*

Average Consensus Definition:

$$\lim_{t\to\infty} \left| x_i(t) - \frac{1}{N} \sum_{j=1}^N x_j(0) \right| = 0, \ 1 \le i \le N.$$

$$(1)$$

Concordia University

Motivation and Objective

Motivation

- Transmission saving for average consensus in multi-agent networks with bandwidth constrained environments.
- Adapting Guaranteed Cost approach to event-triggered average consensus.

Objective

- Achieving event-triggered average consensus with restricted guaranteed operational cost.
- Compute optimal parameters to achieve average consensus with small number of transmission.

Event-triggered Average Consensus

- **1** Agent model: $\dot{x}_i(t) = u_i(t), \quad 1 \le i \le N;$
- **2** Last transmitted state: $\hat{x}_i(t) = x_i(t_k^i), t \in [t_k^i, t_{k+1}^i).$
- S Controller: $u_i(t) = -\sum_{j \in \mathcal{N}_i} a_{ij}(\hat{x}_i(t) \hat{x}_j(t)),$ Frror: $e_i(t) = \hat{x}_i(t) x_i(t)$

Closed-loop system:

$$\dot{\boldsymbol{x}}(t) = -L(\boldsymbol{x}(t) + \boldsymbol{e}(t)), \qquad (2)$$

 $\begin{aligned} L &: \text{Laplacian Matrix}; \\ \boldsymbol{x}(t) &= [x_1(t), \dots, x_N(t)]^T, \\ \hat{\boldsymbol{x}}(t) &= [\hat{x}_1(t), \dots, \hat{x}_N(t)]^T, \\ \boldsymbol{e}(t) &= \begin{bmatrix} e_1(t), \dots, e_N(t) \end{bmatrix}^T \end{aligned}$

Event-triggered Average Consensus

Event-triggering function:

Transmit new state if

 $e_i(t)$ exceeds the threshold $\phi|\hat{\mathbb{X}}_i(t)|$

•
$$|\widehat{\mathbb{X}}_i(t)|$$
 : $|\mathcal{N}_i|\widehat{x}_i(t) - \sum_{j=1}^{\mathcal{N}_i} \widehat{x}_j(t)$,

• Positive scalar ϕ : The transmission threshold to be computed

How to design the optimal value for transmission threshold ϕ ?

- If $\phi = 0 \longrightarrow$ Constant Transmission
- Inadequate small $\phi \longrightarrow$ Waste of communication resources
- Inadequate large $\phi \longrightarrow$ No consensus agreement

Cost function

The proposed cost function:

$$J = \int_0^\infty \left(\mathbf{x}^{\mathsf{T}}(t) R \mathbf{x}(t) + \mathbf{u}^{\mathsf{T}}(t) Q \mathbf{u}(t) \right) dt$$
 (3)

- R and Q: given positive definite weighting matrices.
- Matrix R assigns desired penalty on deviation of the states $\mathbf{x}(t)$ from the target value.
- Matrix Q assigns desired penalty on control input u(t).

If there exists a positive scalar J^* such that the cost J associated with the event-triggered average consensus process satisfies $J < J^*$, then J^* is said to be a guaranteed cost.

How to restrict (minimize) J^* ?

Converting Consensus problem to Stability problem

In order to use the Lyapunov stability theorem and incorporate the cost function J in parameter design, Consensus in transformed to an equivalent stability problem

$$\underbrace{\dot{\mathbf{x}}(t) = -L(\mathbf{x}(t) + \mathbf{e}(t))}_{\text{Consensus problem}} \longleftrightarrow \underbrace{\dot{\mathbf{x}}_{r}(t) = -\mathbb{L}(\mathbf{x}_{r}(t) + \mathbf{e}_{r}(t))}_{\text{Stability problem}}$$

$$oldsymbol{x}_{r}(t) = \hat{L}oldsymbol{x}(t), \quad oldsymbol{e}_{r}(t) = \hat{L}oldsymbol{e}(t), \quad ext{and} \quad \mathbb{L} = \hat{L}L\hat{L}^{\dagger}.$$

 \hat{L} : The reduced order Laplacian matrix.

The global Event-triggering condition:

$$\boldsymbol{e}_{r}^{T}(t)\boldsymbol{e}_{r}(t) \leq \left(\boldsymbol{e}_{r}(t) + \boldsymbol{x}_{r}(t)\right)^{T} M^{T} \phi^{2} M(\boldsymbol{e}_{r}(t) + \boldsymbol{x}_{r}(t)).$$
(4)

Computing Optimal Transmission Threshold

Lyapunov Candidate: $V(t) = \mathbf{x}_r^T(t)P\mathbf{x}_r(t)$ Incorporating the Lyapunov Stability theorem and proposed cost with this inequality:

$$\dot{V}(t) + \mathbf{x}_{r}^{T}(t)R\mathbf{x}_{r}(t) + \mathbf{u}^{T}(t)Q\mathbf{u}(t) < 0$$
(5)

- If (5) is satisfied $\rightarrow \dot{V}(t) < 0 \rightarrow$ The system is stable $(\lim_{t \rightarrow \infty} \mathbf{x}_{r}(t) = 0) \rightarrow$ Reaching average consensus
- Integrating (5) results in $V(\infty) - V(0) + \int_0^\infty \mathbf{x}_r^T R \mathbf{x}_r(t) + \mathbf{u}^T(t) Q \mathbf{u}(t) dt < 0, \text{ which is}$ equivalent to $J < [V(0) = \mathbf{x}_r^T(0) P \mathbf{x}_r(0)].$

Concordia University

Computing Optimal Transmission Threshold

Compute Transmission Threshold ϕ from:

$$\phi = \sqrt{\tau^{-1} \gamma^{-1}} \tag{6}$$

which is conditioned on the solvability of the following convex optimization problem

$$\begin{array}{c} \underset{\gamma,\tau,P}{\min} \quad \overbrace{\tau+\gamma}^{\text{To restrict } J^{\star}} \\ \underset{\gamma,\tau,P}{\min} \quad \overbrace{\tau+\gamma}^{\text{To restrict } J^{\star}} \\ \text{S.t:} \begin{bmatrix} -P\mathbb{L}-\mathbb{L}^{T}P+R & -P\mathbb{L} & -(L\hat{L}^{\dagger})^{T} & M^{T} \\ * & -\tau I & -(L\hat{L}^{\dagger})^{T} & M^{T} \\ * & * & -Q^{-1} & 0 \\ * & * & * & -\gamma I \end{bmatrix} < 0 \quad (7)$$

Concordia University

Experimental Results

Laplacian Matrix:

$$L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & -1 & 0 & -1 \\ 0 & 2 & 0 & 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 2 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 2 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & -1 & 0 & -1 & 5 & -1 & 0 \\ 0 & 0 & -1 & -1 & 0 & -1 & 3 & -1 \\ -1 & -1 & 0 & 0 & 0 & 0 & -1 & 3 \end{bmatrix}$$

- Given optimization values: R = rI, Q = qI, with r = 10, q = 0.1
- Computed Parameters: $\phi = 0.1393$,
 - $J^* = 13327$,

$$J = 4010. \rightarrow J < J^*$$

Experimental Results

How different choices for R and Q affect the average consensus process?

- $\overline{T}I$: Total iteration to reach average consensus
- $A\overline{T}$: Average number of state transmission instants

Table:

The effect of weighting matrices R, and Q on the event-triggered average consensus performance

conscisus periornance						
r	q	ϕ	ĒΤ	ĀT	J	J *
1	0.1	0.1156	310	24.875	404.27	1675.3
10	0.1	0.1393	307	20.875	2322.2	5993.5
20	0.1	0.1402	301	19.5	8026.3	25952.2
1	0.05	0.1307	308	21.5	399.47	1475.9
1	0.1	0.1156	310	24.875	404.27	1675.3
1	1	0.1102	311	24.125	1737.0	4681.2
	-					

Conclusion and Future work

Conclusion

- **1** The data transmission threshold ϕ is affected by a different selection of weighting matrices R and Q.
- **2** A larger ϕ causes a faster consensus convergence rate with fewer number of transmissions which is at the expense of more cost *J*.
- **(3)** For a fixed Q, increasing R results in obtaining a relatively larger value for ϕ .

Future Work

- **1** Guaranteed Cost average consensus in networks with random link failures.
- Q Guaranteed Cost average consensus in networks with time-varying communication delay.

Thank You