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Event-triggered Average Consensus
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@ xi(t): The state of agent i

0
to neighbour j

@ Xi(t): The last transmitted state of agent i up to time t

Average Consensus Definition:
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Motivation and Objective

e Transmission saving for average consensus in multi-agent
networks with bandwidth constrained environments.

e Adapting Guaranteed Cost approach to event-triggered
average consensus.

Objective
e Achieving event-triggered average consensus with restricted
guaranteed operational cost.

e Compute optimal parameters to achieve average consensus
with small number of transmission.
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Event-triggered Average Consensus

©® Agent model: xi(t) = ui(t), 1<i<N,

@ Last transmitted state: Xi(t) = xi(t;), te€[t), t} ).

©® Controller: ui(t) = — > aj(xi(t) —x(¢)),

JEN;

O Error: ei(t) = RXi(t) — xi(t)

Closed-loop system:
x(8) = —L(x(2) + e(1)), (2)

L : Laplacian Matrix;
x(t) = [xa(t), ..., xn(t)]7,
x(t) = [%(t), ..., xn(t)]7,

e(t) = [e(t), ..., en(t)]”
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Event-triggered Average Consensus

Event-triggering function:

Transmit new state if
ei(t) exceeds the threshold ¢|X;(t)]
o [Ri(e)] : NiI%i(E) — o, %i(t)
i . i|Xi j=17% '
e Positive scalar ¢: The transmission threshold to be computed

How to design the optimal value for transmission threshold ¢?

e If =0 —— Constant Transmission
e Inadequate small ¢ —— Waste of communication resources

e Inadequate large ¢ —— No consensus agreement
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Cost function

The proposed cost function:

J= /OOO (X (O)Rx(t)+u” () Qui(z)) dt (3)

e R and Q: given positive definite weighting matrices.

e Matrix R assigns desired penalty on deviation of the states
x(t) from the target value.

e Matrix Q assigns desired penalty on control input u(t).

If there exists a positive scalar J* such that the cost J associated
with the event-triggered average consensus process satisfies J < J*,
then J* is said to be a guaranteed cost.

How to restrict (minimize) J* ?
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Converting Consensus problem to Stability problem

In order to use the Lyapunov stability theorem and incorporate the
cost function J in parameter design, Consensus in transformed to
an equivalent stability problem

x(t) = —L(x(t) + e(t)) = x(t) = —L(xr(t) + er(t))

Consensus problem Stability problem

x(t) = [x(t), e(t)=1Le(t), and L=I[LII
L : The reduced order Laplacian matrix.

The global Event-triggering condition:
e/(De()<(e(t)x(t)) MTEM(e()1x().  (4)
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Computing Optimal Transmission Threshold

Lyapunov Candidate: V/(t) = x"(t)Px(t)
Incorporating the Lyapunov Stability theorem and proposed cost
with this inequality:

V(t) 4+ x(t)Rx.(t) + u'(t)Qu(t) < 0 (5)

o If (5) is satisfied — V/(t) <0 — The system is stable
(tILm x.(t) = 0) — Reaching average consensus

e Integrating (5) results in
V(o) = V(0)+ [5° x T Rx(t)+u’(t)Qu(t) dt <0, which is
equivalent to J < [V(0) = x.(0)Px,(0)].
)7
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Computing Optimal Transmission Threshold

Compute Transmission Threshold ¢ from:
6=V ©)

which is conditioned on the solvability of the following convex
optimization problem

To restrict J*

To enlarge ¢
min T+7 + trace(P?)
v,7P
—PL-LTP+R —PL —(LLD)T MT
S.t: * -7l =(LLHT M7 < (7)
* * -Q! 0
* * * —l
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Experimental Results
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Experimental Results

How different choices for R and @ affect the average consensus process?

® T/: Total iteration to reach average consensus

e AT: Average number of state transmission instants

Table:

The effect of weighting matrices R, and Q on the event-triggered average
consensus performance

r q 1) Tl AT J J*

1 0.1 0.1156 | 310 | 24.875 | 404.27 1675.3
10 | 0.1 | 0.1393 | 307 | 20.875 | 2322.2 | 5993.5
20 | 0.1 0.1402 | 301 19.5 8026.3 | 25952.2
1 | 0.05 | 0.1307 | 308 21.5 399.47 | 1475.9
1 0.1 0.1156 | 310 | 24.875 | 404.27 1675.3
1 1 0.1102 | 311 | 24.125 | 1737.0 | 4681.2
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Conclusion and Future work

Conclusion

@ The data transmission threshold ¢ is affected by a different selection of
weighting matrices R and Q.

@ A larger ¢ causes a faster consensus convergence rate with fewer number
of transmissions which is at the expense of more cost J.

© For a fixed Q, increasing R results in obtaining a relatively larger value
for ¢.

@ Guaranteed Cost average consensus in networks with random link failures.

@ Guaranteed Cost average consensus in networks with time-varying
communication delay.
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Conclusion and Future work

Question?

Thank You
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