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Event-triggered Average Consensus

1 xi (t): The state of agent i

2 x̂i (t): The last transmitted state of agent i up to time t

Average Consensus Definition:

lim
t→∞

∣∣∣ xi (t)− 1

N

N∑
j=1

xj(0)
∣∣∣ = 0, 1≤ i ≤N. (1)
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Motivation and Objective

Motivation
• Transmission saving for average consensus in multi-agent

networks with bandwidth constrained environments.

• Adapting Guaranteed Cost approach to event-triggered
average consensus.

Objective

• Achieving event-triggered average consensus with restricted
guaranteed operational cost.

• Compute optimal parameters to achieve average consensus
with small number of transmission.
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Event-triggered Average Consensus

1 Agent model: ẋi (t) = ui (t), 1 ≤ i ≤ N;

2 Last transmitted state: x̂i (t) = xi (t
i
k), t ∈ [t ik , t

i
k+1).

3 Controller: ui (t) = −
∑
j∈Ni

aij( x̂i (t)− x̂j(t) ),

4 Error: ei (t) = x̂i (t)− xi (t)

Closed-loop system:

ẋ(t) = −L
(
x(t) + e(t)

)
, (2)

L : Laplacian Matrix;
x(t) = [ x1(t) , . . . , xN(t) ]T ,
x̂(t) = [ x̂1(t) , . . . , x̂N(t) ]T ,

e(t) =
[
e1(t) , . . . , eN(t)

]T
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Event-triggered Average Consensus

Event-triggering function:

Transmit new state if

ei (t) exceeds the threshold φ|X̂i (t)|

• |X̂i (t)| : |Ni |x̂i (t)−
∑Ni

j=1 x̂j(t),

• Positive scalar φ: The transmission threshold to be computed

How to design the optimal value for transmission threshold φ?

• If φ = 0 −−−→ Constant Transmission

• Inadequate small φ −−−→ Waste of communication resources

• Inadequate large φ −−−→ No consensus agreement
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Cost function

The proposed cost function:

J =

∫ ∞
0

(
xT (t)Rx(t)+uT (t)Qu(t)

)
dt (3)

• R and Q: given positive definite weighting matrices.

• Matrix R assigns desired penalty on deviation of the states
x(t) from the target value.

• Matrix Q assigns desired penalty on control input u(t).

If there exists a positive scalar J∗ such that the cost J associated
with the event-triggered average consensus process satisfies J ≤ J∗,
then J∗ is said to be a guaranteed cost.

How to restrict (minimize) J∗ ?
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Converting Consensus problem to Stability problem

In order to use the Lyapunov stability theorem and incorporate the
cost function J in parameter design, Consensus in transformed to
an equivalent stability problem

ẋ(t) = −L
(
x(t) + e(t)

)
︸ ︷︷ ︸

Consensus problem

⇐⇒ ẋr(t) = −L
(

xr(t) + er(t)
)

︸ ︷︷ ︸
Stability problem

xr(t) = L̂x(t), er(t) = L̂e(t), and L = L̂LL̂†.
L̂ : The reduced order Laplacian matrix.

The global Event-triggering condition:

eT
r (t)er(t)≤

(
er(t)+xr(t)

)T
MTφ2M( er(t)+xr(t) ). (4)
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Computing Optimal Transmission Threshold

Lyapunov Candidate: V (t) = xT
r (t)Pxr(t)

Incorporating the Lyapunov Stability theorem and proposed cost
with this inequality:

V̇ (t) + xT
r (t)Rxr(t) + uT(t)Qu(t) < 0 (5)

• If (5) is satisfied → V̇ (t)< 0 → The system is stable
( lim
t→∞

xr(t) = 0) → Reaching average consensus

• Integrating (5) results in
V (∞)−V (0) +

∫∞
0 xT

r Rxr(t) + uT(t)Qu(t) dt < 0, which is

equivalent to J < [V (0) = xT
r (0)Pxr(0)]︸ ︷︷ ︸
J∗

.
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Computing Optimal Transmission Threshold

Compute Transmission Threshold φ from:

φ =
√
τ−1γ−1 (6)

which is conditioned on the solvability of the following convex
optimization problem

min
γ,τ,P

To enlarge φ︷ ︸︸ ︷
τ + γ +

To restrict J?︷ ︸︸ ︷
trace(P2)

S.t:

−PL−LTP+R −PL −(LL̂†)T MT

∗ −τ I −(LL̂†)T MT

∗ ∗ −Q−1 0
∗ ∗ ∗ −γI

 < 0 (7)
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Experimental Results

• Laplacian Matrix:

L =



2 0 0 0 0 −1 0 −1

0 2 0 0 0 −1 0 −1

0 0 2 0 0 −1 −1 0

0 0 0 2 −1 0 −1 0

0 0 0 −1 2 −1 0 0

−1 −1 −1 0 −1 5 −1 0

0 0 −1 −1 0 −1 3 −1

−1 −1 0 0 0 0 −1 3


• Given optimization values:

R = rI , Q = qI , with r = 10, q = 0.1

• Computed Parameters:
φ = 0.1393,

J∗ = 13327,

J = 4010. → J < J∗
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Experimental Results

How different choices for R and Q affect the average consensus process?

• T̄I : Total iteration to reach average consensus

• ĀT : Average number of state transmission instants

Table:

The effect of weighting matrices R, and Q on the event-triggered average
consensus performance

r q φ T̄I ĀT J J∗

1 0.1 0.1156 310 24.875 404.27 1675.3
10 0.1 0.1393 307 20.875 2322.2 5993.5
20 0.1 0.1402 301 19.5 8026.3 25952.2

1 0.05 0.1307 308 21.5 399.47 1475.9
1 0.1 0.1156 310 24.875 404.27 1675.3
1 1 0.1102 311 24.125 1737.0 4681.2
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Conclusion and Future work

Conclusion

1 The data transmission threshold φ is affected by a different selection of
weighting matrices R and Q.

2 A larger φ causes a faster consensus convergence rate with fewer number
of transmissions which is at the expense of more cost J.

3 For a fixed Q, increasing R results in obtaining a relatively larger value
for φ.

Future Work

1 Guaranteed Cost average consensus in networks with random link failures.

2 Guaranteed Cost average consensus in networks with time-varying
communication delay.
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Question?

Thank You
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